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This dissertation introduces Pikse, a novel methodology for more effective

and efficient checking of code conformance to specifications using parallel and

incremental techniques, describes a prototype implementation that embodies the

methodology, and presents experiments that demonstrate its efficacy. Pikse has

at its foundation a well-studied approach – systematic constraint-driven analysis

– that has two common forms: (1) constraint-based testing – where logical con-

straints that define desired inputs and expected program behavior are used for test

input generation and correctness checking, say to perform black-box testing; and

(2) symbolic execution – where a systematic exploration of (bounded) program

paths using symbolic input values is used to check properties of program behav-

ior, say to perform white-box testing.

Our insight at the heart of Pikse is that for certain path-based analyses,

(1) the state of a run of the analysis can be encoded compactly, which provides

a basis for parallel techniques that have low communication overhead; and (2) iter-

ations performed by the analysis have commonalities, which provides the basis for
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incremental techniques that re-use results of computations common to successive

iterations.

We embody our insight into a suite of parallel and incremental techniques

that enable more effective and efficient constraint-driven analysis. Moreover, our

techniques work in tandem, for example, for combined black-box constraint-based

input generation with white-box symbolic execution. We present a series of exper-

iments to evaluate our techniques. Experimental results show Pikse enables signif-

icant speedups over previous state-of-the-art.
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Chapter 1

Introduction

Software failures are expensive. The most commonly used methodology

for validating quality of software is testing. Traditional approaches for testing are

often ad hoc, manual, and even ineffective. Researchers have developed various

approaches to automate testing [29, 46, 52, 53, 65, 66]. The last decade [10, 42, 63,

64, 91] has seen substantial improvements in automated testing approaches, which

are now capable of handling programs that use advanced constructs of modern pro-

gramming languages. Moreover, automation has enabled systematic testing, also

known as bounded exhaustive testing, where a program is checked against all inputs

(with desired properties) up to a given size [63]. Systematic testing takes its inspi-

ration in part from model checking [55] – a methodology that is highly successful

for hardware verification – where exhaustive exploration of a bounded state space

is a fundamental idea. A number of studies have shown the ability of systematic

testing to find bugs in a variety of programs, including those that perform intricate

operations on structurally complex input data and that it holds much promise in

improving reliability of software systems [17].

1.1 Problem context and description: Systematic constraint-
driven analysis

Constraint-based testing [22, 24, 53, 65, 87] is a well-studied technique

for systematic testing, where user-provided logical constraints – input constraints
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that define properties of desired inputs and output constraints that define properties

of expected program behavior – are solved using automatic constraint solvers to

generate test inputs and check correctness. To illustrate, consider testing a method

in an object-oriented program; the method’s pre-condition can be used as the input

constraint to generate valid pre-states to invoke the method, and it’s post-condition

can be used as the output constraint to check that the expected relation between

pre-states and post-states holds for the method executions tested.

Typically, constraint-based testing is used in a black-box setting where the

code under test is simply run against desired inputs to generate outputs, which are

checked. However, more general constraint-driven analysis can also be used in

a white-box setting where the language constructs that implement the code, e.g,

statements and branches, are leveraged, e.g., to direct input generation to maximize

branch coverage. A particularly popular technique for white-box testing is symbolic

execution [22, 65] – a program analysis, which is also constraint-driven.

1.1.1 Black-box testing

Writing constraints. Logical constraints are declarative in nature, i.e., they de-

scribe what (and not how). Thus, it would seem most natural to write them using a

declarative language [55]. However, for programmers who write code only in com-

monly used imperative languages, such as C/C++, writing constraints using a likely

unfamiliar declarative paradigm may pose a substantial learning burden and dimin-

ish the attractiveness of constraint-driven analysis. A common approach to facilitate

writing constraints is to support imperative constraints, e.g., predicate methods that

return true if their inputs satisfy the constraints they represent and false otherwise.

Thus, imperative constraints allow programmers to formulate desired properties us-

ing constructs of the same language they use for programming.
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Solving constraints. The key enabling technology in systematic constraint-driven

analysis is automatic constraint solving. Recent years have seen notable advances

in this technology [79, 101]. Moreover, these advances have favorably been backed

by the growth in raw computation power. As a result, constraint solvers today

are able to efficiently solve several useful classes of formulas and their application

to software verification is rapidly growing. For imperative constraints written as

predicates, a novel solving technique – execution-driven pruning – was introduced

by the Korat framework [10], where the basic idea is to use repeated predicate

executions on candidate inputs to observe properties that make inputs invalid and

prune inputs with those properties from the space of all inputs. Figure 1.1 gives

an example C/C++ predicate and the inputs generated by Korat using a bound of 3

nodes.

1.1.2 White-box testing

Constraints based on program paths. Symbolic execution [22, 65] is a program

analysis technique that allows constraints to be derived from the code. Specifi-

cally, the technique explores all program paths (up to a given bound on path length)

and for each path, builds a path condition, which represents the branching condi-

tions along the path – a solution to a feasible path condition is a program input

that executes that path. Thus, a common application of symbolic execution is input

generation for (bounded) path coverage in white-box testing. Figure 1.2 illustrates

symbolic execution on an example C/C++ program to generate tests for path cover-

age.
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Figure 1.1 Korat produces all structures of a given size using a predicate function.

1: struct BinaryTree {
2: struct Node {
3: Node* left;
4: Node* right;
5: };
6: Node* root;
7: int size;
8: bool repOk() {
9: std::set<Node*> v; // visited

10: std::stack <Node*> worklist;
11: if( root ) {
12: worklist.push( root );
13: v.insert( root );
14: }
15: while( !worklist.empty() ) {
16: Node* current = worklist.top();
17: worklist.pop();
18: if( current ->left ) {
19: if(!v.insert(current ->left).second)
20: return false;
21: worklist.push( current ->left );
22: }
23: if( current ->right ) {
24: if(!v.insert(current ->right).second)
25: return false;
26: worklist.push( current ->right );
27: }
28: }
29: return visited.size() == size;
30: }
31: };
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Figure 1.2 Code that swaps two integers and the corresponding symbolic execution
tree, where transitions are labeled with program control points [64]

1: int x, y;
2: if (x > y) {
3: x = x + y;
4: y = x - y;
5: x = x - y;
6: if (x - y > 0)
7: assert(false);
8: }
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PC: true

x:X, y:Y
PC: X>Y

x:X+Y, y:Y
PC: X>Y

x:X+Y, y:X
PC: X>Y
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1.1.3 Correctness properties

The focus of this dissertation is systematic constraint-driven analysis for

checking functional correctness properties of data-driven applications, e.g., pro-

grams that operate on dynamically allocated data and perform destructive updates

on the memory heap. These functional properties include absence of run-time fail-

ures, such as segmentation faults, as well as richer properties that are explicitly

provided by the user as test assertions. While checking of other forms of prop-

erties, e.g., properties of control, performance, and space efficiency, may also be

possible using constraints, we do not consider them here.

1.2 Our solution

This dissertation introduces Pikse, a novel methodology for more effective

and efficient checking of code conformance to specifications using parallel and in-

cremental techniques. Specifically, Pikse enhances systematic constraint-driven

analysis by (1) introducing parallel and incremental algorithms to optimize solv-

ing of imperative constraints and enabling more efficient black-box testing; (2) in-

troducing parallel and incremental algorithms to optimize symbolic execution and

enabling more efficient white-box testing; and (3) introducing staged analysis for

constraint-based testing to enable more efficient and effective combined black-box

and white-box testing.

Our insight into Pikse’s parallel and incremental techniques is that for cer-

tain constraint-driven analyses, such as imperative constraint solving and symbolic

execution: (1) the state of an analysis run can be encoded compactly, which pro-

vides a basis for parallel analysis that has low communication overhead and allows

effective load balancing; and (2) the analysis performs an iterative computation
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that has significant commonalities in successive iterations, which provides the basis

for incremental analysis that re-uses results of computations common to successive

iterations. Moreover, our insight into Pikse’s staged analysis is that an input con-

straint can be solved partially to build abstract test suites that can be concretized

on demand using symbolic execution using each abstract test, which provides the

basis for re-using abstract suites across different programs, and reducing the size of

suites and hence the number of tests to run.

1.3 Contributions
1.3.1 Symbolic Execution

To enhance symbolic execution for white-box testing, we make the follow-

ing contributions.

• Test input as analysis state. We introduce the idea of encoding the state of

symbolic execution using a single test input using a given branch exploration

strategy.

• Ranged symbolic execution. Using two test inputs, ranged symbolic execu-

tion defines a range of paths to be analyzed under a given branch exploration

strategy. Thus, a symbolic execution problem of systematically analyzing

bounded execution paths is divided into a number of sub-problems using sim-

ply a set of test inputs.

• Dynamic range refinement using work stealing. We introduce load-

balancing for parallel symbolic execution using dynamically defined ranges

that are refined using work stealing.
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• Parallel Symbolic Execution using master/slave architecture: Addition-

ally we present a different technique based on a novel parallel algorithm for

executing symbolic execution on a parallel cluster. We also compare tech-

niques for stopping distribution of work when small enough problems are

formed for reducing communication overhead while load balancing as well.

1.3.2 Constraint-based testing

To enhance the solving of imperative constraints for improved black-box

testing, we make the following contributions.

• Lightweight static data-flow analysis for constraint solving: We introduce

the idea of utilizing def-use analysis in optimizing repeated predicate execu-

tions on similar inputs.

• Multi-value comparisons. We introduce the idea of comparing sets of values

with a desired value to compute the predicate’s output on its future executions

that are thus forwarded.

• Focused Generation: We propose a way to allow some structural constraints

to be solved exhaustively but others to be solved for a single solution. For in-

stance, we can test a structure that contains instances of pre-tested structures,

by exploring the outer structure exhaustively but not the inner structure.

• Parallel Algorithm for Test Generation: We present PKorat, a scalable

parallel algorithm based on Korat for generation of structurally complex test

inputs.
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1.3.3 Combined black-box white-box testing

To combine black-box and white-box testing for efficient analysis, we make

the following contributions.

• Abstract symbolic tests: We introduce abstract symbolic tests that are a

combination of concrete tests and constrained symbolic elements. These tests

are not executable using conventional execution, rather they provide a basis

for symbolic execution of programs with pre-conditions.

• Staged symbolic execution: We introduce the technique of performing sym-

bolic execution in stages, where the first stage generates abstract symbolic

tests, which the second stage uses for systematic testing — each abstract

symbolic test is dynamically expanded into a number of concrete tests de-

pending on the control-flow complexity of the program under test. Staged

symbolic execution allows both a reduction in test suite size without a loss in

its quality, as well as a novel re-use of tests.

• Symbolic execution for declarative programs: We introduce the idea of

symbolic execution for declarative programs written in analyzable notations,

similar to symbolic execution of imperative programs. We enable the possi-

bilities of using this as the first stage in staged testing.

• Symbolic execution for Alloy models: We present our approach for sym-

bolic execution of Alloy, and provide an extensible technique to support var-

ious symbolic types and operators.
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1.3.4 Implementation and experiments

In implementing and evaluating the above algorithms, we make the follow-

ing contributions.

• Implementation: We provide an efficient implementation of our algorithms.

We build our techniques on the Korat tool for constraint-based testing [10],

KLEE [14] – an open-source symbolic execution implementation, and the

CREST [12] symbolic execution tool. We employ MPI [100] for our parallel

implementations and run them on the Texas Advanced Computing Center

(TACC)1.

• Experiments: We perform a series of experiments to validate the algorithms

and techniques presented in this thesis. Our subjects include GREP – a C

program with 15K lines of code, GNU Coreutils – a suite of widely deployed

Unix utilities, Java program generation [27], and complex structures like red-

black trees and dynamic order statistics [26].

• Empirical Study: We perform an extensive study of existing techniques for

constraint solving. We conduct a controlled experiment for performance anal-

ysis of different constraint solving techniques. We attempt to quantify the

trade-offs of these techniques in writing constraints and in processing their

outputs.

1.4 Organization

This thesis document is organized as follows:

1http://tacc.utexas.edu
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Chapter 2 gives a background on symbolic execution and constraint-based

testing and explains their working with examples.

Chapter 3 discusses how our incremental and parallel techniques scale sym-

bolic execution in novel ways. We give a series of experiments showing the benefits.

Chapter 4 discusses the improvements in constraint-based testing which is

often used for black-box testing.

Chapter 5 introduces “staged testing” where dynamic analysis can be di-

vided in different stages and each stage can benefit from a selection of different

techniques.

Chapter 6 presents an empirical study of four techniques comparing them

for solving structural constraints. It also introduces the idea of symbolic execution

in Alloy.

Chapter 7 discusses related work in the domains of symbolic execution,

SAT solver based techniques, constraint-based testing, and parallel algorithms for

software checking.
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Chapter 2

Background

In this chapter, we present the basics of symbolic execution, constraint-

based testing using Korat, and the Alloy tool based on SAT solving. We explain

the key ideas using illustrative examples.

2.1 Symbolic Execution

Symbolic execution [22, 65] is a technique first presented over three decades

ago for systematic exploration of behaviors of imperative programs using symbolic

inputs, which characterize classes of concrete inputs. The key idea behind symbolic

execution is to explore (feasible) execution paths by building path conditions that

define properties required of inputs to execute the corresponding paths. The rich

structure of path conditions enables a variety of powerful static and dynamic analy-

ses. However, traditional applications of symbolic execution have largely been lim-

ited to small illustrative examples, since utilizing path conditions in automated anal-

ysis requires much computation power, particularly for non-trivial programs that

have long execution paths with complex control flow. During recent years, many

advances has been made in constraint solving technology [79] and additionally, raw

computation power has increased substantially. These advancements have led to a

resurgence of symbolic execution, and new variants that perform partial symbolic

execution have become particularly popular for systematic bug finding [17] in pro-

grams written in commonly used languages such as C/C++, C#, and Java.
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Traditional symbolic execution is a combination of static analysis and the-

orem proving. In symbolic execution, operations are performed on symbolic vari-

ables instead of actual data. On branches, symbolic execution is forked with op-

posite constraints on symbolic variables in each forked branch. At times, the con-

straints on symbolic variables can become unsatisfiable signaling unreachable code.

Otherwise, end of the function is reached and a formula on symbolic variables is

formed. A solution to this formula will give a set of values that will direct an actual

execution along the same path.

2.1.1 Example

Forward symbolic execution is a technique for executing a program on sym-

bolic values [65]. There are two fundamental aspects of symbolic execution: (1)

defining semantics of operations that are originally defined for concrete values and

(2) maintaining a path condition for the current program path being executed – a

path condition specifies necessary constraints on input variables that must be satis-

fied to execute the corresponding path.

As an example, consider the following program that returns the absolute

value of its input:

static int abs(int x) {

L1. int result;

L2. if (x < 0)

L3. result = -x;

L4. else result = x;

L5. return result; }

To symbolically execute this program, we consider its behavior on a prim-
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itive integer input, say X. We make no assumptions about the value of X (except

what can be deduced from the type declaration). So, when we encounter a condi-

tional statement, we consider both possible outcomes of the condition. To perform

operations on symbols, we treat them simply as variables, e.g., the statement on

L3 updates the value of result to be -X. Of course, a tool for symbolic execu-

tion needs to modify the type of result to note updates involving symbols and to

provide support for manipulating expressions, such as -X.

Symbolic execution of the above program explores the following two paths:

path 1: [X < 0] L1 -> L2 -> L3 -> L5

path 2: [X >= 0] L1 -> L2 -> L4 -> L5

Note that for each path that is explored, there is a corresponding path con-

dition (shown in square brackets). While execution on a concrete input would have

followed exactly one of these two paths, symbolic execution explores both.

2.2 Constraint-based testing with Korat

The Korat framework [10] introduced a novel technique for solving imper-

ative constraints – execution-driven solving – where a bounded space of candidate

inputs is systematically explored by executing the given predicate on candidate in-

puts and monitoring the executions to filter and prune invalid candidates from the

input space. This technique has been used effectively for finding bugs in a number

of applications [38, 76, 105, 106] and similar techniques lay at the basis of other

effective frameworks for systematic bug finding, e.g., lazy initialization in general-

ized symbolic execution [64] and the UC-KLEE framework [88].

Korat implements a backtracking search and uses the predicate’s executions

to prune large portions of its input space. Korat runs the predicate on a candidate

14



input, monitors the fields accessed by the predicate, backtracks on the last field

accessed to generate a new candidate by making a non-deterministic assignment

to that field, and re-executes the predicate. Korat’s backtracking, driven by field-

access monitoring, provides significant pruning of input spaces, which are very

large even for small sized inputs.

Korat uses an imperative predicate as input. An imperative predicate is a

predicate function written in an imperative language, as opposed to declarative lan-

guage, to check the structural properties of a complex structure. It is conventionally

called repOk. In the object-oriented paradigm, such a function is called a class

invariant [73].

Algorithm 2.1 describes the Korat algorithm as a recursive function. This

recursive function starts with the candidate vector with all zeroes. It builds a C++

object structure using BUILDCANDIDATE. BUILDCANDIDATE makes field assignments

according to candidate vector indices and generates an actual candidate from a can-

didate vector. It then tests the candidate using repOk. Then for all accessed fields

up to a field pointing to a non-zero index, it recursively tests candidates for all

non-zero indices of that field up to the maximum index given by NONISOMAX.

Further pruning is done in Korat to avoid isomorphic structures. Isomorphic

structures are structures that only differ in object identities. Programs are not usu-

ally concerned with the identity of an object, e.g. the actual memory address in C++

or the object hash code in Java. The identities of n objects can be interchanged in

n! ways. Isomorphic structure avoidance therefore prunes a large portion of search

space.
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Algorithm 2.1: The Korat algorithm written as a recursive function. It
builds a C++ object structure using BUILDCANDIDATE and tests it using
repOk. It recursively tests candidates for all non-zero indices of the last
accessed field up to the maximum index given by NONISOMAX.

input : candidateV

1 candidate← BuildCandidate(candidateV);
2 (predicate, accessFields)← repOk(candidate);
3 if predicate then
4 ValidCandidate(candidate);
5 end
6 while Size(accessFields)>0 ∧ candidateV[Top(accessFields)]=0 do
7 for i← 1, NonIsoMax(candidateV, accessFields) do
8 candidateV[Top(accessFields)]← i;
9 Korat(candidateV);

10 end
11 candidateV[Top(accessFields)]← 0;
12 Pop(accessFields);
13 end

Algorithm 2.2: The NonIsoMax algorithm used by Korat to ensure that
isomorphic structures are not produced.

input : candidateV, accessFields

1 f ← Top(accessFields);
2 if Primitive( f ) then
3 return MaxDomainIndex( f ) ;
4 else
5 t← 0;;
6 forall the i ∈ accessFields do
7 if SameDomain(i, f ) ∧ t<candidateV[i] then
8 t← candidateV[i];
9 end

10 end
11 return Min(t+1,MAXDOMAININDEX( f )) ;
12 end
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2.2.1 Example: Binary search tree

The binary search tree class (BST) is defined in Listing 2.1. It contains a

sub-class Node that represents a single node in the BST. The Node contains left

and right pointers to other nodes, a parent pointer and an integer data field. The

outer class contains a pointer to the root node and the number of nodes in the tree in

the size field. Two methods must be provided for constraint solving: a finitize

method that describes bounds for analysis (called finitization) and a repOk predicate

method that tells if a particular instance of BST is valid or not (also called the class

invariant).

Listing 2.1. Binary search tree class definition.
1: class BST {
2: struct Node {
3: Node* left;
4: Node* right;
5: Node* parent;
6: int data;
7: };
8: Node* root;
9: int size;

10: public:
11: static Finitization* finitize(int size);
12: bool repOk();
13: void add(int data) {
14: // method under test
15: }
16: };

We provide the finitization of BST in Listing 2.2. We create a domain of

Node objects and require root, left, right, and parent to take values only from

this domain. For data and size fields, we create integer domains of appropriate

sizes.

17



Listing 2.2. Finitization for Korat.
1: Finitization* BST::finitize(int c) {
2: Finitization* f = Finitization::create <BST >();
3: Domain <Node >* nodes = f->domain <Node >(c);
4: f->set(&BST::root , nodes);
5: f->set(&BST::size , f->domain <int>(c, c));
6: f->set(&Node::left , nodes);
7: f->set(&Node::right , nodes);
8: f->set(&Node::parent , nodes);
9: f->set(&Node::data , f->domain <int>(1, c));

10: return f;
11: }

Next, we provide the repOk function for BST in Listing 2.3. It is the class

invariant and checks the BST properties. These properties are: (1) acyclicity along

left and right pointers, (2) correct parent pointers, and (3) larger data values

are stored in right sub-tree while smaller data values are stored in left sub-tree. The

given function checks these properties using a work-list based algorithm.

Korat takes as input a class definition with its class invariant and a finitiza-

tion function (provided by repOk and finitize methods in the above example).

To start solving the constraint, the Korat algorithm forms an initial candidate

structure to test. The candidate is formed by assigning every field the first value

from its domain specified in the finitization. Korat executes repOk on this candidate

to check if it is valid.

During the repOk execution, Korat monitors field accesses and builds a

field-access list. After repOk finishes, Korat picks a new value for the last ac-

cessed field from its field domain and runs repOk again. If there are no more values

in its field domain, it backtracks to the field accessed before it. This way Korat

explores the state-space without testing every possible combination of values in the
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Listing 2.3. Class invariant for binary search tree.
1: bool BST::repOk() {
2: set<Node*> visited;
3: stack <tuple <Node*, int, int> > wl;
4: if (root) {
5: wl.push(make_tuple(root ,
6: numeric_limits <int>::min(),
7: numeric_limits <int>::max()));
8: visited.insert(root);
9: }

10: while (!wl.empty()) {
11: Node* c = get <0>(wl.top());
12: int min = get <1>(wl.top());
13: int max = get <2>(wl.top());
14: wl.pop();
15: if (c->data < min || c->data > max)
16: return false;
17: if (c->left) {
18: if (!visited.insert(c->left).second)
19: return false;
20: if (c->left ->parent != c)
21: return false;
22: wl.push(make_tuple(c->left , min, c->data -1));
23: }
24: if (c->right) {
25: if (!visited.insert(c->right).second)
26: return false;
27: if (c->right ->parent != c)
28: return false;
29: wl.push(make_tuple(c->right , c->data+1, max));
30: }
31: }
32: return size == visited.size();
33: }
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field domains.

Korat produces non-isomorphic inputs. Non-isomorphic inputs differ only

in the identity of objects used and provide no additional fault-finding ability in

testing code. To produce non-isomorphic inputs, Korat records the values in the

field domain of reference fields that are accessed by other reference fields of the

same type. It only backtracks to null, values also referenced by other fields of the

same type, and one new value. For example, if N0 and N1 are used by root and left

pointers respectively, the right pointer will take a value from {null,N0,N1,N2}.

Choosing another value N3 would form a structure isomorphic to the one formed by

using N2.

Given the class definition, finitization, and class invariant, our desired output

is a set of all concrete structures of a given size. For size 3 these structures are shown

in Figure 2.1. We expect the constraint solver to list all of the five structures and

only these five structures.

Figure 2.1 Binary search trees of 3 nodes with parent pointers.
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Korat starts its search from an empty tree with root=null and backtracks

on accessed fields to try other values. To explain the working of Korat we describe

its progression between two valid candidates shown at the right and left extremes

of Figure 4.1 on page 74.
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When Korat analyzes Figure 4.1(a) using repOk, the fields accessed are

(root, N0.data, N0.left, N0.right, N1.parent, N1.data, N1.left,

N1.right, N2.parent, N2.data, N2.left, N2.right, size). After mark-

ing this as a valid candidate, it backtracks to N2.right as size is already at its

maximum value. All choices for N2.right result in cyclic structures, so Korat

backtracks to N2.left which also results in cyclic structures. After each of

these executions, Korat uses the “field access list” generated as a result of the last

execution. Since we assume that the repOk function is deterministic, the initial

part of the field access list is the same.

After backtracking past other fields, Korat resets N1.right to null and

backtracks to try other values for N1.left. When it tries N1.left=N2, it fails

because N2.parent=null (its initial value). However the field access list has a

new field and Korat tries its other values. N2.parent=N1 works but repOk fails

because N2.data6> 1. This is Figure 4.1(b). In total, Korat performs 16 repOk

executions between these two states. Korat proceeds this way until all values are

exhausted and finds all valid structures within the given bounds.

2.3 Alloy

Alloy is a first-order declarative logic based on sets and relations, and is

supported by its fully automatic, SAT-based analyzer [55]. The Alloy tool-set is

becoming popular for academic research and teaching as well as for designing de-

pendable software in industry. The powerful analysis performed by the analyzer

makes Alloy particularly attractive for modeling and checking a variety of systems,

including those with complex structural constraints – SAT provides a particularly

efficient analysis engine for such constraints.
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An Alloy specification is a sequence of paragraphs that either introduce new

types or record constraints on fields of existing types. Alloy assumes a universe of

atoms partitioned into subsets, each of which is associated with a basic type. Details

of the Alloy notation and of the Alloy Analyzer can be found in [55].

2.3.1 Example

Acyclic lists can be modeled in Alloy with the following specification

one sig AcylicList {
header: lone Node,
size: Int }

sig Node {
data: Int,
nextNode: lone Node }

pred Acyclic(l: AcylicList) {
all n: l·header·∗nextNode | n !in n·̂ nextNode }

The signature declarations AcylicList and Node introduce two uninter-

preted types, along with functions header : AcylicList → Node, size :

AcylicList → Int, data : Node → Int, and nextNode : Node → Node.

header and nextNode are partial functions, indicated by the declaration lone.

The Alloy predicate Acyclic, when invoked, constrains its input l to be

acyclic. The dot operator ‘.’ represents relational image, ‘˜’ represents transpose,

‘ˆ’ represents transitive closure, and ‘*’ denotes reflexive transitive closure.

The quantifier all stands for universal quantification. For instance, the con-

straint all n: l.header.*nextNode | F holds if and only if evaluation of the

formula F holds for each atom in the transitive closure of nextNode starting from

l.header. The quantifier lone stands for “at most one”. There are also quantifiers

some and no for existential and universal quantification.
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Given an Alloy specification, the Alloy Analyzer automatically finds in-

stances that satisfy the specification, i.e., the valuations of relations and signatures

that make all the applicable constraints in the specification true. Alloy Analyzer

finds instances within a pre-specified scope – bound on the universe of discourse.

Alloy Analyzer can also enumerate non-isomorphic instances.
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Chapter 3

Constraint-driven analysis for white-box testing

This chapter describes the Pikse suite of techniques for improving

constraint-driven analysis for white-box testing. Specifically, we describe ranged

symbolic execution (Section 3.1), which enables parallel and incremental symbolic

execution, and ParSym (Section 3.2), which presents a different technique for par-

allel symbolic execution. ParSym was initially presented at ICSTE 2010 [94].

3.1 Ranged symbolic execution

A key limiting factor of symbolic execution remains its inherently complex

path-based analysis. Several recent research projects have attempted to address

this basic limitation by devising novel techniques, including compositional [40],

incremental [86], and parallel [16, 43, 94, 103] techniques. While each of these

techniques offers its benefits (Chapter 7), a basic property of existing techniques

is the need to apply them to completion in a single execution if completeness of

analysis (i.e., complete exploration of the bounded space of paths) is desired. Thus,

for example, if a technique times out, we must re-apply it for a greater time bound,

which can represent a costly waste of computations that were performed before the

time out.

In this section, we present ranged symbolic execution (under submission), a

novel technique for scaling symbolic execution. Our key insight is that the state of
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a symbolic execution run can, rather surprisingly, be encoded succinctly by a test

input – specifically, by the input that executes the last terminating (feasible) path

explored by symbolic execution. By defining a fixed branch exploration ordering –

e.g., taking the false branch before taking the true branch at each non-deterministic

branch point during the exploration – an operation already fixed by common imple-

mentations of symbolic execution [2, 14], we have that each test input partitions the

space of (bounded) paths under symbolic execution into two sets: explored paths

and unexplored paths. Moreover, the branch exploration ordering defines a linear

order among test inputs; specifically, for any two inputs (that do not execute the

same path or lead to an infinite loop), the branching structure of the correspond-

ing paths defines which of the two paths will be explored first by symbolic execu-

tion. Thus, an ordered pair of tests, say 〈τ,τ′〉, defines a range of (bounded) paths

[ρ1, . . . ,ρk] where path ρ1 is executed by τ and path ρk is executed by τ′, and for

1≤ i < k, path ρi+1 is explored immediately after path ρi.

Encoding the symbolic execution state as a test input enables a variety of

novel ways to distribute the exploration in symbolic execution to scale it, both in a

sequential setting and in a parallel setting. The encoding allows dividing the prob-

lem of symbolic execution into several sub-problems of ranged symbolic execution,

which have minimal overlap and can be solved separately. It also allows effective

load balancing in a parallel setting using work stealing with minimal overhead due

to the compactness of a test input.

3.1.1 Illustrative Example

Forward symbolic execution is a technique for executing a program on sym-

bolic values [22, 65]. There are two fundamental aspects of symbolic execution: (1)

defining semantics of operations that are originally defined for concrete values and
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(2) maintaining a path condition for the current program path being executed – a

path condition specifies necessary constraints on input variables that must be satis-

fied to execute the corresponding path.

As an example, consider the following program that returns the middle of

three integer values.

1: int mid(int x, int y, int z) {
2: if (x<y) {
3: if (y<z) return y;
4: else if (x<z) return z;
5: else return x;
6: } else if (x<z) return x;
7: else if (y<z) return z;
8: else return y; }

To symbolically execute this program, we consider its behavior on primitive

integers input, say X, Y, and Z. We make no assumptions about the value of these

variables (except what can be deduced from the type declaration). So, when we

encounter a conditional statement, we consider both possible outcomes of the con-

dition. To perform operations on symbols, we treat them simply as variables and

calculate the expression.

Symbolic execution of the above program explores the following six paths:

path 1: [X < Y < Z] L2: -> L3:

path 2: [X < Z < Y] L2: -> L3: -> L4:

path 3: [Z < X < Y] L2: -> L3: -> L4: -> L5:

path 4: [Y < X < Z] L2: -> L6:

path 5: [Y < Z < X] L2: -> L6: -> L7:

path 6: [Z < Y < X] L2: -> L6: -> L7: -> L8:
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Note that for each path that is explored, there is a corresponding path con-

dition (shown in square brackets). While execution on a concrete input would have

followed exactly one of these paths, symbolic execution explores all six paths.

The path conditions for each of these paths can be solved using off-the-shelf

SAT solvers for concrete tests that exercise the particular path. For example, path 2

can be solved to X=1, Y=3, and Z=2.

Ranged symbolic execution enables symbolic exploration between two

given paths. For example, if path 2 and path 4 are given, it can explore paths 2,

3, and 4. In fact, it only needs the concrete solution that satisfies the corresponding

path condition. Therefore it is efficient to store and pass paths. Ranged symbolic

execution builds on a number of key observations we make:

• A concrete solution corresponds to exactly one path in code and it can be used

to re-build the path condition that leads to that path. Solving a path condition

to find concrete inputs is computationally intensive. However, checking if a

given solution satisfies a set of constraints is very light-weight. Thus we can

symbolically execute the method again and at every branch only choose the

direction satisfied by the concrete test.

• We can define an ordering on all paths if the true side of every branch is

always considered before the false side. Since, every concrete test can be

converted to a path, the ordering can be defined over any set of concrete

inputs.

• Using two concrete inputs, we can find two paths in the program and we can

restrict symbolic execution between these paths according to the ordering

defined above. We call this ranged symbolic execution.
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For example, consider that we are given test inputs τ(X=1, Y=3, Z=2) and

τ′(X=2, Y=1, Z=3) which take paths ρ and ρ′ in code, and we want to symboli-

cally execute the range between them. We show this example in Figure 3.1. We

start symbolic execution as normal and at the first comparison x<y, we note that ρ

traverses the true branch while ρ′ traverses the false branch. At this point, we

also know that ρ< ρ′ in the ordering we defined. Thus, when x< y, we only explore

what comes after ρ in the ordering and when x 6< y we explore what comes before

ρ′. At the next comparison y<z we skip the true branch and only explore the false

branch satisfied by ρ. Similarly we can skip three states using ρ′. Skipped states

are grayed out in Figure 3.1. Three paths are explored as a result. We consider the

range [τ,τ′) as a half-open interval where the start is considered part of the range

but not the end. Thus we produce two test cases as a result.

Figure 3.1 Symbolic execution between paths ρ and ρ′.
x<y

y<z

ret y x<z

ret z

ρ

ret x

ρ

ρ

x<z

ret y

ρ′

x<z

ret z ret x

ρ′

Once we have the basic mechanism for ranged symbolic execution, we use

it in three novel ways:

• Incremental execution: Ranged symbolic execution enables symbolic exe-

cution to be paused at any stage and it can be restarted later with minimal

overhead using the last input it generated as the start of new range.
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• Parallel execution: Ranges of symbolic execution can be analyzed in par-

allel. For example, we can have three non-overlapping ranges for the above

example [null,τ), [τ,τ′), and [τ′,null). Executing these in parallel

will completely analyze the above function without any communication be-

tween parallel nodes. Figure 3.2 shows a high level overview of dividing

symbolic execution into non-overlapping ranges. Only the paths dividing the

ranges are redundantly analyzed as path of both ranges. The initial set of di-

viding points can come from manual or random test cases or from symbolic

execution of a previous version of code.

• Parallel execution using work stealing: We further provide an algorithm for

parallel symbolic execution using work stealing when there is no initial set

of inputs to form the ranges. For example, if a parallel node starts symbolic

execution of the mid function and reaches the first branch x<y, it proceeds

with the true branch while queueing the false branch in a list of work to be

finished later. In the meanwhile, if another parallel node is free for work, it

can steal work from the queue of this node and explore paths where !(x<y).

Figure 3.2 High level overview of dividing symbolic execution into non-
overlapping ranges for independent symbolic executions.

(a) Standard symbolic
execution

(b) Ranged symbolic
execution (4 ranges)

(c) Only boundaries
redundantly analyzed
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We next discuss using a single test input as analysis state and using two test

inputs to define an analysis range (Section 3.1.2), performing symbolic execution

within a range (Section 3.1.3), using ranged symbolic execution for parallel and in-

cremental analysis (Section 3.1.4), and combining ranged symbolic execution with

distributed work stealing for dynamic load balancing (Section 3.2.2.4).

3.1.2 Test input as analysis state

We introduce three concepts in this section: (1) describing analysis state

with a single concrete test, (2) defining ordering of tests based on paths taken, and

(3) using two concrete tests to define a range of analysis.

We introduce the concept of describing analysis state with a single concrete

test.

Definition 1. Given the ordering O of all paths ρ taken by a path-based analysis,

any concrete test τ defines a state of analysis ςτ where every path ρ < ρτ under O

has been explored and none of the rest have been explored. ρτ is the path taken by

test τ.

Definition 1 assumes the existence of translation from concrete tests to paths

and an algorithm to compare tests based an the ordering taken by the path-based

analysis. The translation from concrete tests to paths can be done simply by execut-

ing the test and observing the path it takes. In practice, however, we will not need

to find the corresponding path separately and it will be calculated along with other

operations as discussed in the next section. Next, we discuss test ordering.

Definition 2. Given two paths ρ and ρ′, where 〈[0, . . . , [i〉 is the set of basic blocks

in ρ and 〈[′0, . . . , [′i〉 is the set of basic blocks in ρ′, we define that ρ < ρ′ if and

only if there exists a k such that ∀k
i=0[i = [′i and the terminating instruction in [k is
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a conditional branch with [k+1 as the “then” basic block and [′k+1 as the “else”

basic block.

Definition 2 orders tests based on the paths they take. We find the first

branch where the two paths differ. We consider the test taking the “true” side

smaller than the test taking the “false” side. If two tests take the same path till

the end, we consider them equivalent. Ordering more than two tests can be done by

any sorting algorithm.

Definition 3. Let τ and τ′ be two tests with execution paths ρ and ρ′ respectively,

we define a range [τ,τ′) to be the set of all paths ρi such that ρ≤ ρi < ρ′.

The benefit of defining a half-open range is that given three tests τa < τb <

τc, we have [τa,τc) = [τa,τb)+ [τb,τc).

We extend this concept to a set of n tests. We can find the paths taken by

these tests and order them using the above algorithm. If the tests take p distinct

paths (p ≤ n), they define p+ 1 ranges of paths. Note that p < n when multiple

tests take the same path in code and are thus equivalent. The first and last range

use special tests begin and end, where begin is the smallest path and end is one

beyond the biggest path. The end is defined as one beyond the last path because we

define ranges as half-open and we want all paths explored.

Lemma 1. Ranged analyses on a set of n−1 ranges [τ1,τ2), ..., [τn−1,τn) explore

the same set of paths as the ranged analysis on [τ1,τn).

This dissertation presents algorithms to perform symbolic execution of a

program using ranges defined by tests. It shows how to efficiently perform symbolic

execution of only the paths within a range. The next subsection presents these

algorithms.
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3.1.3 Ranged symbolic execution

In this section, we apply the technique of defining ranges of path-based

analysis to symbolic execution. We call this ranged symbolic execution.

Definition 4. Let τ and τ′ be two tests that execute paths ρ and ρ′ where ρ < ρ′.

Define ranged symbolic execution for [τ,τ′) as symbolic execution of all paths ρi

such that ρ≤ ρi < ρ′.

Performing ranged symbolic execution has two parts: (1) defining the ranges

given a set of tests and (2) executing each range of tests symbolically.

To define ranges given a set of tests, we can use any sorting algorithm given

a comparator to compares two tests. Two tests can be compared either by running

them independently and analyzing the branches they take or we can analyze two

paths simultaneously until we find the first difference. The benefit of the second

technique is that we only need to execute the common part of two paths and not

explore two complete paths.

Algorithm 3.1 gives the algorithm for analyzing the common part of paths

taken by two tests. The algorithm depends on a predicate function that checks if a

given test satisfies a given condition. For that, we symbolically evaluate the path

condition for the values in the given test. Note that checking if a path condition is

satisfied by a given input is a very efficient operation. In contrast, we need much

more time to solve a path condition to generate concrete test inputs using a SAT

solver.

To run symbolic execution between two tests, we have to (1) convert them

into paths, (2) find all paths between them, and (3) execute those paths symbolically.

We do all three tasks simultaneously and thus we have no intermediate storage

requirements.
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Algorithm 3.1: Algorithm to compare two tests. This can be used with
any sorting algorithm to order any number of tests.

input : test τ, test τ′

output: BIGGER, SMALLER, or EQUIVALENT

1 define path-cond ρ, address-space AS, address-space AS’;
2 i = first instruction in func;
3 repeat
4 if i is-a conditional branch then
5 cond← condition of i;
6 if PathTakenByTest(τ, ρ∧cond, AS) then
7 if NOT PathTakenByTest(τ′, ρ∧cond, AS’) then
8 return BIGGER;
9 end

10 ρ← ρ∧ cond;
11 i← first instruction in then basic block;
12 else
13 if PathTakenByTest(τ′, ρ∧cond, AS’) then
14 return SMALLER;
15 end
16 ρ← ρ∧ NOT(cond);
17 i← first instruction in else basic block;
18 end
19 else
20 update AS for i using τ;
21 update AS’ for i using τ′;
22 i← successor of i;
23 end
24 until i is the last instruction;
25 return EQUIVALENT;

Symbolic execution state for a particular path contains the set of path con-

straints and address space. At branches, the state is split into two states. States to

be visited in the future are added to a queue of states. The order of choosing states

from the queue determines the search strategy used. We use depth first search in
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this work.

For restricting symbolic execution to a range, we introduce new variables

startTest and endTest in the symbolic execution state. The initial state gets the

startTest and endTest parameters from program input. If one of the parameters

is the special begin or end symbol, we just use null in its place. We perform

symbolic execution normally while using the special HANDLEBRANCH function in

Algorithm 3.2 for conditional branches.

Algorithm 3.2 works by checking if the current state has a startTest as-

signed and the startTest does not satisfy the branch condition. Since we defined

test ordering with true branches preceding false branches, we need to eliminate the

true branch from the search. Similarly if we have an endTest which does satisfy

the branch condition, we eliminate the false branch from being explored.

3.1.4 Parallel and incremental analysis

Ranged symbolic execution enables parallel and incremental analysis. For

parallel analysis, we take a set of tests and use them to divide the symbolic anal-

ysis into a number of ranges. These ranges are then evaluated in parallel. We can

use more ranges then available workers so that workers that finish quickly can pick

another range from the work queue. The initial set of tests can come from manual

tests, a symbolic execution run on a previous version of code, or even from a shal-

low symbolic execution run on the same code. In our evaluation, we pick random

collection of tests from a sequential run and use it to define ranges for the parallel

run. In the next section, we introduce another way to parallelize that requires no

initial set of tests. It uses work stealing to get to-be-explored states from a busy

worker to a free worker, and in doing so, dynamically redefining the ranges for both

workers.
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Algorithm 3.2: Algorithm for handling a branch for ranged symbolic
execution. Each state works within a range defined by a start test τstart
and an end test τend . A new state is created using a basic block to start
execution from, and a pair of tests to define the range.

input : state, branch, test τstart , test τend
output: set of states to be explored

1 cond← branch condition of branch;
2 BBthen← then basic block of branch;
3 BBelse← else basic block of branch;
4 if τ∧¬(τstart ⇒ cond) then
5 return {new state(BBelse, τstart , τend)};
6 end
7 if τ′∧τ′⇒ cond then
8 return {new state(BBthen, τstart , τend)};
9 end

10 if cond is unsatisfiable then
11 return {new state(BBelse, τstart , τend)};
12 else if ¬cond is unsatisfiable then
13 return {new state(BBthen, τstart , τend)};
14 else if both are unsatisfiable then
15 // triggers for unreachable code;
16 return /0;
17 else
18 return {new state(BBthen, τstart , null), new state(BBelse, null,

τend) };
19 end
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Ranged symbolic execution also enables resumable execution, where we

can stop symbolic execution at any point and resume it by giving it the last generated

test as the starting point. To use it in combination with parallel analysis, we would

also need the original ending point of the paused range. In the evaluation, we show a

scheme, where pre-defined ranges are analyzed in increments resulting in negligible

overhead and greater flexibility.

Ranged symbolic execution can potentially be extended to support symbolic

execution on incremental changes in code. This would require finding the smallest

and largest paths leading to changed code and defining a range using them. We plan

to present this technique in future work.

3.1.5 Dynamic range refinement

Dynamic range refinement enables dynamic load balancing for ranged sym-

bolic execution using work with work stealing. It starts with a single worker node

responsible for the complete range [a,c). Whenever this node hits branches it ex-

plores the true side and puts the false side on a queue to be considered later. As

other workers come, they can steal work from this queue. The state on the queue is

persisted as a test case b and the range is redefined to [a,b). The stolen range [b,c)

is taken up by another worker.

Our implementation of distributed symbolic execution using work stealing

utilizes a master coordinator node and uses MPI for communication. Algorithm 3.3

gives the algorithm for work stealing coordinator. It maintains lists for waiting

workers and busy workers. Whenever a node needs work it tries to find a busy

worker and tries to steal work. If a previously started stolen work request completes,

it passes the work to a waiting worker. Sometimes, a stolen work request fails

because the node is already finished or there is no work in the queue at that time. In
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such a case, it tries to steal work from another worker node.

Algorithm 3.4 is the algorithm for a worker node. When it receives a range

from the coordinator, it performs ranged symbolic execution on it. If it receives

a request to steal work, it checks if there is any state in the work queue. If so,

it converts it to a concrete test to easily pass to the coordinator, and redefines the

current symbolic execution range to end at that test. If there is no state in the work

queue, it informs the coordinator of a failure. The worker repeats getting work and

stealing ranges until the coordinator tells it to shut down.

Using intermediate states in this manner is different from using concrete

tests that represent complete paths in code (like Section 3.1.4). Intermediate states,

on the other hand, represent partial paths. Partial paths can result in overlapping

ranges and more work that absolutely necessary. We circumvent this by choosing

zero values for any fields not accessed by the concrete test. This extends the partial

path to make a complete path that satisfies a zero value assignment for remaining

fields. It is possible that such a path ends up being infeasible, but it is a complete

path and sufficient to define non-overlapping symbolic execution ranges.

3.1.6 Evaluation

To evaluate ranged symbolic execution, we pose the following research

questions:

• If we divide a symbolic execution problem into ranges and execute them se-

quentially, how does the performance compare with respect to running sym-

bolic execution without ranges?

• If we divide a symbolic execution problem into ranges using some set of man-

ual tests or tests from some prior iteration, and test those ranges in parallel on
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Algorithm 3.3: Algorithm for work stealing coordinator.
1 define lists of waiting workers and busy workers;
2 count of workers with no theft started = 0;
3 give the whole task to the first worker;

4 while true do
5 receive message m from worker w;
6 if m=need work then
7 find a worker w2 where no theft has been initiated; if no such

process then
8 increment count of workers with no theft started;
9 if this count = total number of workers then

10 terminate, we are done;
11 end
12 else
13 ask w2 to give stolen work;
14 end
15 add w to list of waiting workers;
16 else if m=stolen work then
17 give stolen work to a waiting worker w2;
18 remove w2 from list of waiting workers;
19 if count of workers with no theft started > 0 then
20 ask w2 to give stolen work (again);
21 decrement count of workers with no theft started;
22 end
23 else if m=cant steal then
24 choose another busy worker w2;
25 ask w2 to give some stolen work;
26 end
27 end
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Algorithm 3.4: Algorithm for work stealing worker node performing
ranged symbolic execution.

1 while true do
2 receive message m from coordinator;
3 if m=exit then
4 terminate;
5 end
6 else if m=new work then
7 start ranged symbolic execution of new work ;
8 else if m=steal work then
9 if stealable states exist in symbolic execution state then

10 remove state and convert it to a concrete test;
11 send the concrete test to coordinator;
12 update the end of current symbolic execution range;
13 else
14 inform coordinator that stealing failed
15 end
16 end
17 end
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different machines, do we get a reasonable speedup?

• If we let a set of workers solve a symbolic execution problem without prior

division and let them divide the problem dynamically using work stealing,

how does the speedup compare to static ranges that require no communica-

tion?

In the following subsections, we describe (1) the set of test programs we use,

(2) our methodology, (3) the experimental results, and (4) the threats to validity.

3.1.6.1 Subjects

To evaluate ranged symbolic execution, we use GNU core utilities or simply

Coreutils1 — the basic file, shell, and text manipulation core utilities for the GNU

operating system.

Coreutils are medium sized programs with two to six thousand lines of code.

Some of these programs do a particular task with a lot of error checks and thus form

a deep search tree while others perform multiple functions and form a broad search

tree. Deep trees are bad for any kind of parallel execution while broad trees provide

opportunity for efficient parallel analysis. Considering all these utilities provides a

good mix and representation of programs where parallelism in symbolic execution

can and cannot help.

Coreutils were also used in the evaluation of KLEE symbolic execution tool.

As, we build ranged symbolic execution using KLEE, Coreutils provide a good

benchmark. We ran each program in Coreutils for ten minutes and chose 71 utilities

1http://www.gnu.org/s/coreutils
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that covered more than a hundred paths in this time. Given more time, ranged

symbolic execution can be evaluated for the other utilities as well.

3.1.6.2 Methodology

In this section, we discuss our test environment, how we ensure that all

schemes cover the same paths for a quantitative comparison, how we define static

ranges, and our experiments for work stealing.

We performed the experiments on the Lonestar Linux cluster at the Texas

Advanced Computing Center (TACC). TACC enable reliable experiments as pro-

cessors are completely allocated to one job at a time.

To compare standard symbolic execution with ranged symbolic execution

and multiple parallel runs using these ranges, we want every technique to cover the

same paths. To ensure this, we store the last path completely covered by standard

symbolic execution and use this path as the bound for ranged executions. The time

of standard symbolic execution shown in the tables is calculated from the start of

execution to when this last completed path was covered. This adjustment provides

a fair comparison between our standard and ranged symbolic execution.

We store generated tests from standard symbolic execution and choose nine

random tests to define ten ranges for ranged symbolic execution. The end of the last

range is fixed to the last test generated by standard symbolic execution (as discussed

above). As the performance of ranged symbolic execution depends on the random

tests chosen, we repeat the random selection and ranged symbolic execution five

times and find the minimum, maximum, and average. We also find the minimum,

maximum, and average times for the range taking the longest time for each set. This

gives us the time for parallel execution using static ranges with 10 workers.
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We then use 10 workers and 1 coordinator processor to symbolically exe-

cute the same problem with no a priori division using load balancing with dynamic

work stealing. This experiment is not repeated multiple times as there is no non-

deterministic choice of ranges to be made. All ranges are dynamically formed.

Lastly, we choose 5 programs that gave the worst speedup with parallel

symbolic execution using work stealing, 5 programs that gave median speedup, and

5 programs that gave the best speedup. We use these 15 programs and run parallel

symbolic execution using 5 and 20 workers also to see how speedup changes with

number of available workers.

3.1.6.3 Experimental results

Table 3.1 shows the results for all 71 programs we tested. The second col-

umn has time for sequential symbolic execution using KLEE. The third column

gives the minimum, maximum, and average times for covering the same paths di-

vided into 10 random ranges. The fourth column has the minimum, maximum, and

average time for the range taking the most time using the same ranges. Note that

while the total time is pretty close for different random ranges, the time for the range

taking the most time varies a lot. Thus the benefit of running in parallel depends

on how good a static range is. This restriction applies to other parallel schemes

as well that use static partitioning, e.g. [103]. The next column shows the calcu-

lated range of speedup achieved. The last two columns have the time and speedup

for 11 processors (10 workers and 1 coordinator) when performing parallel sym-

bolic execution using work stealing. We chose 10 workers so that the times can be

directly compared to the times for10 parallel workers using random static ranges

(column 4).
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Table 3.1. Ranged symbolic execution for incremental and parallel checking for 71 program from GNU Coreutils suite
of Unix utilities. At times the speedup is greater than 10X because of optimal use of caches in KLEE. KLEE is more
efficient at solving multiple smaller problems than a single large problem.

Standard Incremental sym- Parallel symbolic execution using 10 workers
symbolic bolic execution using static random ranges using work

Program execution time (s) time (s) stealing
Name time (s) min / avg / max min / avg / max speedup time (s) speedup
base64 600 365 / 377 / 388 68 / 100 / 119 5.0 - 8.8X 83 7.2X
basename 156 110 / 115 / 126 18 / 32 / 63 2.5 - 8.6X 47 3.3X
cat 600 465 / 497 / 518 114 / 175 / 247 2.4 - 5.3X 90 6.6X
chcon 596 401 / 438 / 479 233 / 251 / 283 2.1 - 2.6X 193 3.1X
chgrp 569 283 / 301 / 325 68 / 138 / 175 3.3 - 8.4X 41 13.8X
chmod 550 243 / 256 / 267 73 / 78 / 88 6.2 - 7.6X 46 12.0X
chown 598 263 / 283 / 300 64 / 87 / 120 5.0 - 9.4X 41 14.4X
chroot 599 358 / 393 / 414 102 / 151 / 238 2.5 - 5.8X 330 1.8X
comm 607 730 / 929 / 1125 338 / 472 / 599 1.0 - 1.8X 630 1.0X
cp 600 231 / 264 / 290 58 / 120 / 175 3.4 - 10.3X 56 10.8X
csplit 601 349 / 366 / 387 105 / 162 / 196 3.1 - 5.7X 57 10.5X
cut 600 427 / 442 / 465 144 / 171 / 221 2.7 - 4.2X 105 5.7X
date 278 252 / 260 / 275 83 / 113 / 130 2.1 - 3.3X 84 3.3X
dd 601 353 / 379 / 402 121 / 162 / 195 3.1 - 5.0X 278 2.2X
df 341 151 / 153 / 154 38 / 59 / 69 5.0 - 8.9X 49 7.0X
dircolors 600 460 / 468 / 485 101 / 147 / 198 3.0 - 5.9X 113 5.3X
dirname 618 628 / 701 / 758 377 / 534 / 616 1.0 - 1.6X 574 1.1X
du 601 482 / 540 / 578 134 / 180 / 232 2.6 - 4.5X 115 5.2X
echo 600 400 / 419 / 441 112 / 156 / 203 3.0 - 5.3X 101 6.0X
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Name time (s) min / avg / max min / avg / max speedup time (s) speedup
env 600 492 / 503 / 512 114 / 171 / 236 2.5 - 5.3X 116 5.2X
expand 600 334 / 352 / 367 60 / 110 / 169 3.6 - 10.1X 59 10.2X
factor 609 609 / 622 / 640 93 / 156 / 185 3.3 - 6.5X 540 1.1X
fmt 601 743 / 781 / 826 142 / 176 / 215 2.8 - 4.2X 255 2.4X
fold 600 216 / 227 / 246 62 / 73 / 83 7.3 - 9.7X 45 13.3X
ginstall 596 429 / 451 / 500 105 / 163 / 232 2.6 - 5.7X 281 2.1X
groups 588 658 / 667 / 686 130 / 169 / 214 2.7 - 4.5X 350 1.7X
head 600 229 / 282 / 380 42 / 111 / 246 2.4 - 14.3X 85 7.1X
id 600 257 / 270 / 293 104 / 125 / 140 4.3 - 5.7X 49 12.3X
join 594 499 / 530 / 582 108 / 131 / 162 3.7 - 5.5X 192 3.1X
kill 600 207 / 214 / 223 43 / 65 / 107 5.6 - 13.9X 76 7.9X
ln 600 179 / 213 / 255 38 / 99 / 166 3.6 - 16.0X 53 11.4X
mkdir 596 605 / 735 / 847 259 / 313 / 400 1.5 - 2.3X 474 1.3X
mknod 609 549 / 790 / 1134 485 / 555 / 662 0.9 - 1.3X 572 1.1X
mktemp 600 352 / 375 / 402 197 / 212 / 256 2.3 - 3.1X 240 2.5X
mv 598 438 / 482 / 601 257 / 305 / 335 1.8 - 2.3X 353 1.7X
nice 600 254 / 299 / 368 80 / 153 / 255 2.3 - 7.5X 64 9.4X
nl 600 253 / 285 / 330 72 / 141 / 210 2.9 - 8.3X 53 11.3X
nohup 601 323 / 365 / 422 107 / 185 / 276 2.2 - 5.6X 290 2.1X
od 601 609 / 637 / 654 120 / 209 / 264 2.3 - 5.0X 122 4.9X
paste 600 380 / 397 / 433 85 / 130 / 206 2.9 - 7.1X 83 7.3X
pathchk 599 313 / 364 / 442 100 / 169 / 208 2.9 - 6.0X 178 3.4X
pinky 600 173 / 198 / 227 47 / 67 / 81 7.4 - 12.7X 46 13.1X
pr 601 538 / 580 / 606 93 / 169 / 237 2.5 - 6.4X 108 5.6X
printenv 588 337 / 549 / 749 96 / 251 / 352 1.7 - 6.2X 46 12.8X
printf 598 188 / 219 / 273 53 / 81 / 121 4.9 - 11.3X 46 12.9X
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Name time (s) min / avg / max min / avg / max speedup time (s) speedup
readlink 600 247 / 266 / 305 86 / 108 / 137 4.4 - 7.0X 41 14.7X
rm 603 344 / 375 / 392 109 / 148 / 194 3.1 - 5.6X 185 3.3X
runcon 598 227 / 252 / 280 54 / 86 / 141 4.2 - 11.2X 55 10.8X
seq 600 287 / 312 / 333 90 / 110 / 133 4.5 - 6.6X 105 5.7X
setuidgid 600 507 / 552 / 623 95 / 156 / 206 2.9 - 6.3X 253 2.4X
sha1sum 600 312 / 324 / 332 72 / 111 / 144 4.2 - 8.4X 70 8.6X
shred 600 334 / 397 / 452 96 / 154 / 203 2.9 - 6.3X 95 6.3X
shuf 600 338 / 358 / 380 82 / 114 / 142 4.2 - 7.3X 74 8.1X
split 600 496 / 513 / 524 134 / 206 / 254 2.4 - 4.5X 123 4.9X
stat 599 246 / 268 / 290 73 / 88 / 104 5.8 - 8.2X 79 7.6X
stty 601 154 / 170 / 183 37 / 49 / 74 8.2 - 16.5X 63 9.6X
su 418 331 / 340 / 348 115 / 134 / 143 2.9 - 3.6X 300 1.4X
sum 600 240 / 282 / 340 86 / 136 / 204 2.9 - 7.0X 52 11.5X
tac 602 381 / 480 / 579 210 / 313 / 406 1.5 - 2.9X 160 3.8X
tail 600 349 / 369 / 397 102 / 152 / 204 2.9 - 5.9X 81 7.4X
tee 600 280 / 306 / 336 84 / 128 / 207 2.9 - 7.1X 50 12.0X
touch 561 312 / 333 / 371 81 / 115 / 157 3.6 - 7.0X 282 2.0X
tr 597 497 / 638 / 730 395 / 459 / 583 1.0 - 1.5X 569 1.0X
tsort 600 541 / 545 / 551 113 / 153 / 189 3.2 - 5.3X 121 5.0X
tty 588 517 / 530 / 556 174 / 222 / 308 1.9 - 3.4X 294 2.0X
uname 599 156 / 194 / 230 31 / 71 / 109 5.5 - 19.3X 34 17.7X
unexpand 600 508 / 528 / 541 102 / 148 / 196 3.1 - 5.9X 121 5.0X
uniq 600 370 / 391 / 430 119 / 150 / 175 3.4 - 5.0X 58 10.3X
vdir 596 377 / 440 / 553 162 / 263 / 425 1.4 - 3.7X 125 4.8X
wc 600 555 / 570 / 591 109 / 136 / 187 3.2 - 5.5X 125 4.8X
who 600 304 / 332 / 377 69 / 123 / 225 2.7 - 8.8X 70 8.6X
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Name time (s) min / avg / max min / avg / max speedup time (s) speedup
Average 581 371 / 409 / 454 117 / 166 / 220 3.3 - 6.8X 160 6.6X
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Our speedup for parallel symbolic execution using work stealing ranges

from 1.0X (no speedup) to 17.7X. As 17.7 is more than the number of workers,

we investigated and found that KLEE uses a lot of internal caches which perform

much better when they are of a reasonable size. Thus KLEE is more efficient at

solving smaller problems that one bigger problem. This is intuitive as symbolic ex-

ecution maintains a lot of internal state and memory maps and search operations are

common. These search operations become much more efficient for smaller prob-

lems (with or without cache). Thus ranged symbolic execution often makes KLEE

faster even when all ranges are executed sequentially.

Figure 3.3 contains a plot of the speedup of all 71 utilities ordered by the

speedup achieved using work stealing. The line graph shows the speedup for paral-

lel symbolic execution using work stealing, while the vertical lines show the range

of speedup for parallel symbolic execution using static random ranges. The dot

on the vertical line shows the average speedup for static ranges. Note that for one

third of the subject programs, work stealing gives a speedup similar to the minimum

speedup achieved using static ranges while for the other two third subject programs,

its about the maximum speedup achieved using fixed ranges or even more. We be-

lieve that the first set of programs have narrow and deep trees while the second set

of programs have broad trees that expose parallelism. This parallelism is extracted

best using work stealing.

47



Figure 3.3 Speedup with 10 worker nodes using ranged symbolic execution for 71 program from GNU Coreutils
suite of Unix utilities. Vertical bars show the range of speedup achieved using different random static ranges with
the average pointed out. The line shows the speedup achieved using dynamic load balancing using work stealing.
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Table 3.2 Ranged symbolic execution with work stealing for 15 programs from
GNU Coreutils on different number of workers. The +1 designates a separate coor-
dinator node. These are the worst 5, median 5, and best 5 utilities from Figure 3.3
based on performance on 10 workers.

Program Serial 5+1p 10+1p 20+1p
Name time(s) time(s) speedup time(s) speedup time(s) speedup
comm 607 573 1.1X 630 1.0X 514 1.2X
tr 597 509 1.2X 569 1.0X 595 1.0X
dirname 618 567 1.1X 574 1.1X 526 1.2X
factor 609 557 1.1X 540 1.1X 482 1.3X
mknod 609 593 1.0X 572 1.1X 505 1.2X
dircolors 600 142 4.2X 113 5.3X 95 6.3X
pr 601 138 4.4X 108 5.6X 86 7.0X
cut 600 130 4.6X 105 5.7X 67 9.0X
seq 600 129 4.7X 105 5.7X 102 5.9X
echo 600 139 4.3X 101 6.0X 38 15.8X
fold 600 62 9.7X 45 13.3X 32 18.8X
chgrp 569 74 7.7X 41 13.8X 39 14.6X
chown 598 68 8.8X 41 14.4X 39 15.3X
readlink 600 63 9.5X 41 14.7X 34 17.6X
uname 599 48 12.5X 34 17.7X 27 22.2X

Table 3.2 shows the results of running work stealing based ranged symbolic

execution on a smaller set of 15 programs using 5, 10, and 20 workers with 1 co-

ordinator processor and compares it to the performance of analyzing sequentially.

Data for 1 and 10 processors is taken from Table 3.1. This data is plotted in Fig-

ure 3.4. These are the 5 worst, 5 median, and 5 best performing programs in the

first experiment as discussed in Section 3.1.6.2. The 5 programs that performed

worst in the first experiment do not gain anything from more processors and hardly

give any further speedup. Most of the other 10 programs, however, gained more

speedup. How much parallelism can be extracted from the symbolic execution of

a program eventually depends on the program itself. If a program has a deep and

narrow tree (e.g., one main path and only branching for error checks), than one or a

few paths take nearly as much time as the time for complete analysis. Any scheme

that completely checks one path on one processor cannot improve performance of

such programs.
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Figure 3.4 Time taken by 15 programs from GNU Coreutils on different number of
workers for ranged symbolic execution with work stealing. These are the worst 5,
median 5, and best 5 utilities from Figure 3.3 based on performance on 10 workers.
The worst 5 overlap at or near 1.0X and are hard to distinguish.
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3.1.6.4 Threats to validity

We tested our technique on one set of programs. It is possible that other

programs exhibit different behavior. We mitigate this threat by choosing a suite of

medium sized programs and then considering all of them. This is apparent in the

results where we achieve a speedup of 1X (no speedup) to over 17X.

We selected random paths as range boundaries. We expect that in real sce-

narios, it might be more meaningful to divide ranges using tests from some manual

test suite. It is possible that such ranges from manual tests provide much worse or

much better performance. We mitigate this threat by repeating the random selection

multiple times and reporting the range of speedup in both Table 3.1 and Figure 3.3.

We compared performance by comparing time taken for a given number of

paths. Another advantage of ranged symbolic execution is covering a larger number

of paths in the same amount of time. Yet another advantage is covering a small
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number of paths starting at different starting points from random or manual tests.

This can be used to symbolically execute some paths of very large programs and

get high coverage. However, we do not experiment these scenarios. It is possible

that ranged symbolic execution is not as useful in these scenarios as we think. We

plan to investigate this in our future work.

3.2 Parallel symbolic execution using master/slave architecture

Our work on ranged symbolic execution uses the idea to represent the state

of a symbolic execution run using a test input as the basis of a novel approach to par-

allel symbolic execution. We also developed an alternative technique, ParSym [94],

that uses a master/slave architecture to develop a novel parallel algorithm for scaling

symbolic execution using a parallel implementation. In every iteration ParSym ex-

plores multiple branches of a path condition in parallel by distributing them among

available workers resulting in an efficient parallel version of symbolic execution.

We compare techniques for keeping communication low by stopping distribution

once small enough work items have been formed. Experimental results show that

symbolic execution is highly scalable using parallel algorithms: using 512 pro-

cessors, more than two orders of magnitude speedup are observed. While we use

symbolic execution to demonstrate our technique, it directly applies to a variety of

other dynamic analyses that utilize the program’s control-flow.

ParSym supports the combined symbolic and concrete execution model [42,

91]. In this model, the given program is executed on an initial input (either random

or some initial values like zeroes, null, empty string etc.). A path constraint of

the execution is built (as for pure symbolic execution). Each constraint in the path

condition represents a branch on a symbolic input. The last constraint is negated

and the path condition is solved for new concrete inputs. This leads to the execu-
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tion of the not taken side of the last branch statement. When no new branches are

encountered and the last constraint has already been negated once, the exploration

backtracks on the path constraint to explore previous branches.

Our insight into parallel symbolic execution is two-fold: One, symbolic

execution requires the negation of several branch conditions, each of which must be

explored; and two, the time to solve path conditions dominates the time to execute

a path. Symbolic execution is, therefore, likely to benefit significantly from parallel

algorithms, which can effectively distribute the workload among different workers.

To keep the work distribution from becoming a bottleneck, we compare

techniques for stopping distribution and solving the remaining small problems lo-

cally at parallel workers. Because of the unpredictable nature of path exploration

tree, we need to generate many more sub-problems than available workers to keep

them busy most of the time.

3.2.1 Illustrative Example

We describe the combined symbolic and concrete execution technique [42,

91] and intuition for our parallelization technique in this section. We take as exam-

ple a function that checks if a given sequence is bitonic or not. A bitonic sequence

either increases then decreases, or decreases then increases. Monotonic sequences

are bitonic as well. Thus 〈1,2,3,2,1〉 is a bitonic sequence as is 〈3,2,1,0,1〉. We

use symbolic execution on the first implementation in Listing 3.1 and use the sec-

ond implementation to check the results. When the results differ, we can manually

inspect the input and determine which implementation is producing the wrong re-

sult.

We provide this function with an array of four symbolic integers. Sym-

bolic Execution can exhaustively traverse this function (no depth, iteration, or time
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Listing 3.1. Two implementations of a function to check if a given sequence is
bitonic. We symbolically execute the first function and compare results with the
second function.

1:

2: int isBitonic( int a[], int size ) {
3: int firstDec=size -1, firstInc=size -1;
4: int lastDec=0, lastInc=0;
5:

6: for( int i=1; i<size; ++i )
7: if( a[i-1] > a[i] ) lastDec=i;
8: else if( a[i-1] < a[i] ) lastInc=i;
9:

10: for( int i=size -1; i>0; --i )
11: if( a[i-1] > a[i] ) firstDec=i-1;
12: else if( a[i-1] < a[i] ) firstInc=i-1;
13:

14: return lastInc <= firstDec || lastDec <= firstInc;
15: }
16:

17: int isBitonic2( int a[], int size ) {
18: int i=1;
19: while( i<size && a[i-1] <= a[i] ) ++i;
20: while( i<size && a[i-1] >= a[i] ) ++i;
21: if( i==size ) return 1;
22:

23: i=1;
24: while( i<size && a[i-1] >= a[i] ) ++i;
25: while( i<size && a[i-1] <= a[i] ) ++i;
26: return i==size;
27: }
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bound) in 27 iterations. In each run, the loops run 3 times each (one less than ar-

ray size) and each loop has 3–6 conditions in it (based on whether the first if leads

in to the else branch or not. Thus all path conditions for all paths consist of 6–

12 constraints. Note that the comparisons in the return statement do not involve

a symbolic variable or were assigned a symbolic variable and thus do not form a

constraint on inputs.

The first iteration with all zeroes produces a path condition with 12 con-

straints. Symbolic execution takes the first constraint, negates it and solves it. It

then reverts the first constraint and negates the second, solving the first two con-

straints. Then it negates the third (after reverting the second) and solves the first

three constraints and so on. To solve a set of constraints, symbolic execution uses

an external SAT solver. Six of the 12 set of constraints turn out to be unsolvable

i.e. no solution. This can happen, for example, when two symbolic variables are

required to be equal by one constraint and not equal by another. Solving the re-

maining six set of constraints produces six concrete outputs for future iterations.

The search space of symbolic execution is shown in Figure 3.5. Each ver-

tical long box is a path condition resulting from one execution. It is divided into

constraints. The arrow leading from a constraint connects it to the execution that

resulted from negating this constraint and solving the set of constraints up to this

constraint. Grey area represents one or more constraints whose negation produces

an unsolvable set of constraints. Note that every path condition has the same initial

set of constraints as its parent up to the constraint that was negated. These initial

constraints are skipped over and not solved again. These are also not shown in the

figure.

The most common search strategy of symbolic execution is depth first

search. In this, only the first constraint is negated and solved. And then the concrete
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Figure 3.5 Symbolic execution search tree for checking bitonic sequences of length
4. Each bar above represents a path constraint resulting from one execution of
the program. Each white box is a constraint, negating which, produces a solvable
formula and the arrow links it to the corresponding concrete execution. These 27
units of work can be done in parallel in only 4 steps.

Step 1 Step 2 Step 3 Step 4
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inputs produces a new path constraint to be solved. Backtracking to a previous path

condition only happens if new path conditions are fully explored (under given depth

bound). Under any strategy a serial algorithm needs 27 steps to complete this work.

However we can see that the dependency chain is only 4 steps deep. These

are separated by dashed lines in Figure 3.5. Thus, given enough processors (11 in

this case), we can complete this task in only 4 steps instead of 27 steps. There is

potential of 7x speedup2 in this simple example. The parallelization potential for

larger problems is even larger, and since there are numerous small tasks, workload

can be neatly balanced between the processors.

3.2.2 Algorithm

Symbolic execution works with path conditions often stored as complex ex-

pression trees. The main problem in parallelizing symbolic execution is to avoid

transport of these structures between parallel nodes. Concrete inputs, on the other

hand, are usually small and can be further compressed by using input domains (pre-

decided sets of values). We divide work such that each node gets a set of inputs,

executes the program concretely while observing the symbolic path constraint built.

It then negates each constraint turn by turn, solves the path condition for concrete

inputs and sends the input indices to a parallel node. Thus we minimize communi-

cation overhead.

There are three parts of our parallel symbolic execution algorithm. The core

symbolic execution engine that concretely runs programs, forms path conditions,

and solves constraints, a central symbolic execution monitor that monitors the over-

all process, and a symbolic execution agent that helps the core engine communicate

2This number (7x) does not consider communication overhead, and that each task does not take
equal time. It is given to show the potential of parallelization in the algorithm.
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with the monitor. We describe these three components in the following subsections

followed by work distribution optimization in Section 3.2.2.4 and a correctness ar-

gument in Section 3.2.2.5.

3.2.2.1 Symbolic execution engine

Our parallel symbolic execution algorithm is based on combined symbolic

and concrete execution [42, 91]. We start by executing the program on an initial

input (all zeroes, null pointers, empty strings etc.) and observe the path it traverses.

We then negate the first constraint and solve it for concrete values. We then move to

the next constraint, negate it, and solve all constraints up to the negated constraint

in the path condition. We repeat until we get the specified number of solvable

constraints (depth bound) or until all constraints have been used.

Baseline symbolic execution will re-run the program after solving the first

constraint and then work on the new path condition formed (which should only

differ in the part after the negated condition). It only backtracks to the original path

condition when it has explored all newer path conditions exhaustively (under given

depth bound).

In Algorithm 3.5, we show implementation of core engine in function

PARSYM. It receives inputs and uses them for a concrete execution and observes

the path condition like standard symbolic execution. It then checks the path condi-

tion from the posth position and works until all constraints are traversed or enough

new items are produced (according to depth bound). At each position the constraint

is negated, if the resulting path condition (up to that constraint) is solvable, it pro-

duces a new work item that is at the given depth, whose constraints before pos+1

have been negated once, and whose inputs are the result of solving.

We based our implementation an an open source symbolic execution imple-
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Algorithm 3.5: Parallel Symbolic Execution.
input : workItem

1 (depth, pos, inputs)← workItem;
2 (constraints)← ExecAndObserve(testProgram);
3 while depth>0 ∧ pos<Size(constraints) do
4 Negate(constraints[pos]);
5 (success, inputs)← Solve(constraints[0...pos]);
6 if success then
7 depth← depth-1;
8 newWork← (depth, pos+1, inputs);
9 NewWorkItem(newWork);

10 end
11 Negate(constraints[pos]);
12 pos← pos+1;
13 end

mentation [12], the CIL instrumentation library [80], and the CVC3 SMT solver [6].

The SOLVE method in Algorithm 3.5 uses the CVC3 library to solve the constraint.

The key idea in this implementation is that the path constraints need not be

transferred to other nodes. Only program inputs have to be transferred. Also the

function proceeds from solving smaller (and therefore easier and quicker to solve)

constraints to longer (and time taking) constraints. Thus the quicker a work can be

dispatched to another node, the quicker it is done.

The initial work item contains the maximum depth specified by the user,

index of first constraint in path condition to be negated (zero), nothing as input

(zeroes and nulls are used as default by instrumentation). The function EXECAN-

DOBSERVE runs the instrumented program and returns the path condition. The path

condition is used by rest of the algorithm.
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3.2.2.2 Symbolic Execution Monitor

Symbolic Execution Monitor provides the central authority that carries out

symbolic execution of a program. It starts by distributing the executable to be tested

to all nodes running symbolic execution engines using agents running on each ma-

chine. After that it serves as master in a typical master slave configuration [68].

It contains a work queue of inputs to be used for symbolic execution. All other

nodes have a symbolic execution engine that contacts the monitor for an input to

process using the agent. Any new items generated by the engines are sent back to

the monitor, and the monitor enqueues them.

The designation of one processor as monitor is helpful for a large number

of processors. However for a small number of processors, it wastes a valuable

resource. We anticipate that, if necessary, it can share a processor with an agent as

a separate thread and thus avoid the cost for a small number of processors. However

we do not implement this strategy.

The algorithm for monitor is given in Algorithm 3.6. The monitor main-

tains a list of agents that want to work (agentQ), agents that have no more work

to do (exitQ), and a list of pending work items (workQ). This algorithm supports

double buffering at the client (receiving the next work item while processing the

previous one) and that’s why two queues (agentQ and exitQ) are needed. When

a agent has finished work and has not received new work in the background, it

requests for addition to the exitQ.

Double buffering is important to minimize wasted time at the nodes per-

forming actual symbolic execution. By the time they finish with one input, another

is already ready for consumption. This eliminates the need to have larger work

divisions.
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Algorithm 3.6: Algorithm for symbolic execution monitor.
input : agentCount, initialWorkItem

1 workQ← CREATEQUEUE( );
2 agentQ← CREATEQUEUE( );
3 exitQ← CREATEQUEUE( );
4 QUEUE(workQ, initialWorkItem);

5 while SIZE(agentQ) 6=agentCount ∧ SIZE(exitQ) 6= agentCount do
6 (agent, cmd, workItem)← RECV(any);
7 if cmd = QUEUE then
8 if EMPTY(agentQ) then
9 QUEUE(workQ, workItem);

10 else
11 agent′← DEQUEUE(agentQ);
12 SEND(agent′, WORK, workItem);
13 end
14 else if cmd = DEQUEUE then
15 Remove(exitQ, agent);
16 if EMPTY(workQ) then
17 QUEUE(agentQ, agent);
18 else
19 workItem← DEQUEUE(workQ);
20 Send(agent, WORK, workItem);
21 end
22 else if cmd = EXIT then
23 QUEUE(exitQ, agent);
24 end
25 end
26 forall the s← agentQ do
27 SEND(s, EXIT);
28 end
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The initialWorkItem (underlined) for symbolic execution is an initial input

that can be random or some predetermined initial values (like zeroes, nulls, empty

strings etc.). It also contains depth of current symbolic execution iteration and posi-

tion of the next constraint to be negated along with concrete inputs to the program.

The initial input contains the depth bound and zeroth position to explore all parts of

the constraint. The algorithm loops and serves messages from the agents.

There are three types of messages from agents to monitor:

• QUEUE: is used to ask the monitor to add new work items to the work queue.

• DEQUEUE: is used to ask the monitor for a new work item to process. If a

work item is not readily available, the agent is remembered in agent queue.

Whenever work items become available, they are sent to these free agents

instead of being queued in work queue.

• EXIT: is used to tell the monitor that the agent has finished all work and is

safe to exit. However this message does not mean that the agent will exit. In

fact it may get more work from the monitor soon.

The monitor sends only two messages back to the agents:

• WORK: is used to give new work to the agent. It is sent in response to a

DEQUEUE request so the agent should be ready and willing to receive it.

• EXIT: is used to ask the agent to exit. It is sent only when the agent has

expressed will to exit by an EXIT message in the other direction. Therefore it

should be able to safely exit immediately.

Safe termination of the algorithm assumes ordering of messages between

monitor and a particular agent. Simultaneous occurrence of a agent in exitQ and
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agentQ requires that it send an EXIT message when it is in the agentQ (due to a

previous DEQUEUE message). Any later DEQUEUE message would first remove

it from exitQ. Also on a DEQUEUE message, the monitor immediately serves a

agent if work is available. Thus simultaneous occurrence of all agents in both these

queues means that no work is available in the workQ and all agents have finished

their assigned work. At this time the monitor terminates its loop and sends an EXIT

message to all agents.

3.2.2.3 Symbolic Execution Agent

Symbolic execution agents are responsible for providing work items to the

core symbolic execution engine. Algorithm for agent processors is given in Algo-

rithm 3.7. The two buffers workItem and workItemBack) allow double buffering.

When one is being processed, data from the monitor is received in the other. This

allows hiding communication overhead and latency and avoids any wasted time for

the core engine.

At the start, every agent sends the monitor processor a DEQUEUE message

followed by an EXIT message. If work is given to the agent, the EXIT message is

benign (see Section 3.2.2.2). However if there are few work items, and the particular

agent will never get any work to do, the pair of messages will allow the monitor to

remember that this agent is free.

The agent loops until it receives WORK messages (an EXIT message will

break the loop). To process a work item (inputs for symbolic execution), the func-

tion PARSYM in Algorithm 3.5 is used.This function traverses the search graph

and finds new inputs for symbolic execution. Algorithm 3.7 also shows NEW-

WORKITEM, a wrapper for sending an item to the monitor.
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Algorithm 3.7: Algorithm for agent processors for parallel dynamic
analysis and helper functions for parallelizing specific dynamic analysis
tools.

1 workItem← createBuffer( );
2 workItemBack← createBuffer( );

3 Send(monitor, DEQUEUE);
4 Send(monitor, EXIT);
5 (cmd, workItem)← Recv(monitor);
6 while cmd = WORK do
7 Send(monitor, DEQUEUE) (cmd, workItemBack)←

RecvStart(monitor)

8 ParSym(workItem);

9 if not RecvFinish() then
10 Send(monitor, EXIT);
11 WaitForRecvFinish( );
12 end
13 workItem← workItemBack
14 end

input : workItem

15 Send(monitor, QUEUE, workItem) (TODO);
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3.2.2.4 Work Distribution Optimization

We compare three different techniques for reducing communication over-

head while load balancing the work. Since it is not possible to predict the shape of

state space, it is not possible to pre-divide the search space perfectly for indepen-

dent parallel analysis. Thus, if work is divided such that every processor gets one

task, load will be badly divided but there will be almost no communication. On the

other hand, if each and every processing task is distributed centrally, load balancing

will be perfect with high communication overhead. We evaluate the perfectly load

balanced technique and compare it to two techniques that stop distributing work

at a point and then leave the remaining problems to be solved locally. The three

techniques are:

• Load Balanced: In this technique, every node explored in the search tree is

sent to the central monitor which decides where to send it for processing.

• Fixed Number of Sub-Problems per Agent: In this technique, we keep di-

viding the work until a fixed number of problems (specified relative to the

number of available agents) has been generated. For example, we can gener-

ate twice as many problems as agents. Then if some agent got a big problem,

another with a small problem can solve three in that time.

• Fixed Number of Work Queue items: In this mode, we keep dividing work

until the work queue has a given number of problems queued. If problems

are being generated and other agents are taking them and solving them, the

division continues. It only stops when work queue accumulates the given

number of sub-problems.
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3.2.2.5 Correctness

In this section we argue correctness of parallel symbolic execution. We

define correctness as being able to generate the same concrete inputs given the

same depth bound with no time or iteration bound. Given a time or iteration bound,

parallel symbolic execution is not guaranteed to produce the same results even on

repeated executions (with more than one agent). Also with respect to the usual

depth first approach, parallel symbolic execution is considering inputs in a slightly

different order (explained in Algorithm 3.5). Thus the only meaningful comparison

is when there is no time or iteration bound, however a depth bound can be present.

Note first that parallel symbolic execution can never go deeper than standard

symbolic execution. This is because when a work item is generated, the current

depth is stored in it. When a agent processes this work item, it uses the depth stored

in the item and ensures that the maximum depth condition is satisfied.

Now consider that the constraints negated and the set of constraints up to the

negated constraint solved by the parallel version are the same as the serial version.

The difference being that serial version solves one set of constraints, goes deep,

then backtracks to solve the second set of constraints, and so on. Thus with no time

or iteration bound, both versions will end up generating the executions.

3.2.3 Evaluation

We evaluated parallel symbolic execution on four problems. One is sym-

bolic execution of GREP 2.2. The other is using symbolic execution to perform

bounded exhaustive testing of binary trees. Third is our small example from Sec-

tion 3.1.1 to illustrate path explosion problem and how parallelization mitigates it.

And fourth is a function checking a condition on each element of a large linked

list. We used Lonestar, a Linux cluster containing Xeon 2.66GHz processors with
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more than 5000 cores and an InfiniBand interconnect, graciously provided by Texas

Advanced Computing Center (TACC). We tested our executions on up to 512 pro-

cessors (maximum allowance). We also tested using 128, 32, and 8 processors.

Lastly we tested on 2 processors to see the communication overhead (as one pro-

cessor is doing useful work and one is acting as monitor). Serial time reported is

measured by executing on a dedicated processor from the same cluster.

GREP 2.2 GREP 2.2 is a 15K lines of C code application and sufficiently com-

plex due to processing of regular expressions and other search patterns on the input.

We provided it with 10 symbolic characters to be searched within a string of 40

symbolic characters [12].

Bounded Exhaustive Testing Bounded exhaustive testing generates all valid test

inputs within given bounds. This is not trivial for complex structures. Specialized

solver Korat [10] provides means to perform bounded exhaustive testing for com-

plex structures. CUTE [91] introduced support for pointers in symbolic execution

and discussed the idea of performing bounded exhaustive testing for complex struc-

tures using CUTE. To perform this test, we added support for pointers to the open

source CREST tool [12], which does not have built-in support for pointers, and

generated all valid binary trees from size 5 to 10.

Parallel symbolic execution enables bounded exhaustive testing to process

larger bounds and thus further increase the confidence on the program under test.

Bitonic Sequences We did exhaustive symbolic execution for this problem for

arrays of varying number of symbolic integers. Due to the large number of pos-

sibilities of integer ordering, we have a great number of paths and face the path
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explosion problem. The usual solution is to depth bound it and possibly use some

heuristics like no new coverage observed for some time in some direction. How-

ever in this experiment, we do want the number of paths to explode and observe

how parallelization tames path explosion.

Secondly, we include this experiment because we discussed this basic ex-

ample for motivation of parallelization. We showed the potential of parallelization

in this simple example. Now we want to see if that potential can be realized by our

implementation.

Linked List Lastly, we examined a function which checks some properties of

each element of a large linked list. We consider this function as a degenerate exam-

ple where parallelization does not help. This happens because of the shape of the

search space for a linked list does not provide enough potential for parallelism.

Discussion Performance results for all our test subjects are given in Table 3.3.

Due to the similar nature of performance results for our widely different test sub-

jects, we discuss them together in this section. We make a few key observations:

• High speedups are achieved. We achieved up to 135x speedup for GREP 2.2

whereas an even higher 405x for bounded exhaustive testing. By looking at

the last line in both tables, we can see that this would give an even higher

speedup, but it cannot be measured due to TIMEOUT on serial execution.

TIMEOUT is set to 5 hours. For generation of binary trees of 10 nodes, 512

processors finished the work in 90 seconds whereas serial processor timed

out in 5 hours.
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Table 3.3 Performance data for using parallel symbolic execution. For each parallel
run, one processor acts as monitor and the rest as agents. TIMEOUT is set to 5 hours.

Iterations Serial Parallel Time (Speedup)
Time 2p 8p 32p 128p 512p

1,000 0:00:28 0:00:33 0:00:10 (3x) 0:00:08 (3x) 0:00:02 (13x) 0:00:04 (6x)
10,000 0:05:15 0:05:48 0:00:59 (5x) 0:00:18 (17x) 0:00:08 (41x) 0:00:04 (70x)

100,000 1:09:23 1:17:10 0:11:14 (6x) 0:02:37 (26x) 0:00:53 (78x) 0:00:31 (135x)
650,000 TIMEOUT TIMEOUT TIMEOUT 3:47:05 0:52:35 0:13:14

(a) Symbolic Execution of GREP 2.2

Iteration Iterations done
Limit 2p 4p 8p 32p 64p 128p

1p 2004 12491 49916 179963 256671 130090
2p 1862 18776 39380 109475 138130 257292
3p 1860 23901 41293 123728 251573 282853
4p 1858 18663 37749 179506 238349 329559

(b) GREP iterations in one minute when stopping work distribution after fixed number of sub-problems formed

Work Queue Parallel Time (Speedup)
Limit 2p 4p 8p 32p 64p 128p

10 1862 23855 37757 167782 231159 268284
20 1976 23592 32028 176958 234732 372953
30 1995 23870 35635 163517 265396 343421
40 2606 19499 33657 168369 316094 319200

(c) GREP iterations in one minute when stopping work distribution after work queue reaches given size

Size Serial Parallel Time (Speedup)
Time 2p 8p 32p 128p 512p

5 0:00:29 0:00:34 0:00:09 (4x) 0:00:08 (4x) 0:00:13 (3x) 0:00:10 (3x)
6 0:02:05 0:02:22 0:00:23 (5x) 0:00:07 (18x) 0:00:11 (11x) 0:00:12 (10x)
7 0:08:57 0:10:08 0:01:29 (6x) 0:00:26 (21x) 0:00:13 (42x) 0:00:19 (28x)
8 0:38:18 0:43:01 0:06:18 (6x) 0:01:24 (27x) 0:00:28 (83x) 0:00:23 (99x)
9 2:44:12 3:04:37 0:26:18 (6x) 0:06:04 (27x) 0:01:36 (102x) 0:00:24 (405x)

10 TIMEOUT TIMEOUT 1:41:09 0:25:02 0:06:14 0:01:34

(d) Bounded Exhaustive Testing for Binary Trees

Size Serial Parallel Time (Speedup)
Time 2p 8p 32p 128p 512p

6 0:00:32 0:00:38 0:00:09 (3x) 0:00:06 (5x) 0:00:12 (3x) 0:00:09 (3x)
7 0:01:59 0:02:14 0:00:23 (5x) 0:00:10 (11x) 0:00:12 (10x) 0:00:11 (10x)
8 0:07:59 0:07:55 0:01:09 (7x) 0:00:20 (25x) 0:00:11 (43x) 0:00:09 (54x)
9 0:25:04 0:28:09 0:04:03 (6x) 0:01:01 (25x) 0:00:23 (66x) 0:00:11 (140x)

10 1:27:25 1:37:08 0:13:56 (6x) 0:03:14 (27x) 0:00:53 (99x) 0:00:17 (310x)
11 TIMEOUT TIMEOUT 0:47:51 0:10:49 0:02:47 0:00:44

(e) Exhaustive Symbolic Testing for Bitonic Sequences

Size Serial Parallel Time (Speedup)
Time 2p 8p 32p

1000 0:00:10 0:00:12 0:00:15 0:00:13
3000 0:00:69 0:00:79 0:00:80 0:00:83
5000 0:03:15 0:03:36 0:03:41 0:03:42

(f) Function working on linked list elements
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• Efficiency increases with problem size. For 8 processors, it ranged between

3–6x (7x maximum possible as there are 7 agents) and for 32 processors it

ranged between 17–27x except for the smallest problems.

• There are problems where parallelism does not give enough benefit. We

present the degenerate case of operations on linked lists where parallelism

provides almost no benefit. However most programs have more parallelism

than a degenerate linked list and can be exploited by our algorithm.

• Lastly, we observe that stopping distribution of work earlier has its benefits.

However the exact parameters that work best are both problem development

and on the number of agents. If the tree is much deeper, and the work division

is stopped earlier, it can increase the overall time as some processors can be

free.

We plot the number of processors versus speedup on a logarithmic scale.

The plots for all three problems are shown in Figure 3.6. The grey area represents

super-linear speedup. Since both scales are logarithmic, processors (1, 8, 32, 128,

and 512) and their speedup are nicely spaced. The key information from this graph

is that scalability improves with problem size. Smaller problem can deteriorate in

performance when given too many processors. Also note that the best performance

is close to linear. This means that given a big enough problem, we utilize the

resources efficiently.

These results are highly encouraging and support our intuition in Sec-

tion 3.1.1 of the potential of parallelism in symbolic execution. We believe that

we were able to extract high degree of parallelism using our algorithm.
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Figure 3.6 Plot of speedups versus number of processors used for all three test
programs. Grey area is super-linear speedup. Both scales are logarithmic. (a)
Symbolic Execution of GREP 2.2 (b) Bounded Exhaustive Testing for Binary Trees
(c) Exhaustive Symbolic Testing for Bitonic Sequences.
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Chapter 4

Constraint-driven analysis for black-box testing

This chapter describes the Pikse suite of techniques for improving

constraint-driven analysis for black-box testing. We develop our techniques in the

context of the Korat algorithm [10]. Specifically, we present multi-value compar-

isons (Section 4.1) and focused generation (Section 4.2), which allow more efficient

and effective testing using Korat, as well as Parallel Korat (Section 4.3), which

uses a master-slave architecture for parallel black-box test input generation. These

techniques were initially presented at ICST 2012 [60], ASE 2009 [98], and ICST

2009 [95].

4.1 Multi-value comparisons

A key element of constraint-based testing is generation of test inputs from

input constraints, i.e., properties of desired inputs, which is commonly performed

by solving the constraints. We present a novel approach to optimize input genera-

tion from imperative constraints, i.e., constraints written as predicates in an imper-

ative language. A well known technique for solving such constraints is execution-

driven monitoring, where the given predicate is executed on candidate inputs to

filter and prune invalid inputs, and generate valid ones. Our insight is that a

lightweight static data-flow analysis of the given imperative constraint can enable

more efficient solving. This dissertation describes an approach that embodies our

insight and evaluates it using a suite of well-studied subject constraints. The ex-

71



perimental results show our approach provides substantial speedup over previous

work.

This section focuses on constraints written as imperative predicates in C++,

which due to its wide familiarity provides the basis of a framework that can be used

by many developers.

Given the constraints, a key technical challenge in automating this method-

ology is efficient generation of valid inputs, which satisfy the given constraints, i.e.,

for imperative constraints, generating inputs for which the corresponding predicate

returns true. For programs that operate on dynamically allocated data with complex

structural properties, input generation can require costly exploration of very large

input spaces to find valid inputs, e.g., searching the space of all strings (up to a

certain length) to find strings that represent valid XML documents.

While Korat enables an efficient way to prune the input space, it still requires

checking each candidate input that is not pruned using a complete execution of

the given predicate. However, such executions can be wasteful, particularly on

candidate inputs that are largely similar.

We provide a novel approach for more efficient solving of imperative pred-

icates using a lightweight static data-flow analysis. Our insight is that repeated

predicate executions can be optimized by performing certain comparison opera-

tions, which determine the predicate’s output, against sets of candidate values for

fields used in the comparisons, i.e., performing multi-value comparisons, rather

than comparing individual values in turn as in standard execution. Thus, predi-

cate executions on many candidate inputs that are similar are forwarded and the

total execution cost reduced. Conceptually, our approach resembles stateful model

checking where non-deterministic choice allows an expression to evaluate to differ-

ent values, each of which is used in turn. However, a key difference is that we do not
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require storing and re-creating entire states. Moreover, our approach directly uti-

lizes how field values determine the predicate’s output in enumerating valid inputs

as well as in pruning invalid ones.

4.1.1 Illustrative example

Our approach, Koratmulti, uses multi-value comparisons based on light-

weight data analysis. It is a technique for reducing the amount of repOk executions

required to find all valid candidates by Korat. It is an automated technique that

requires no modification to the repOk predicate.

Koratmulti performs a static data-flow analysis on the LLVM bit-code of the

program and instruments it. This analysis identifies any field accesses in repOk that

are used in a comparison that directly results in the predicate failing or succeeding.

Here, “directly result” means that the result of the comparison is either returned

directly or it is used in a conditional branch that results in returning from the func-

tion on either the true side or the false side. Once such comparisons are identified,

we instrument them with a special call with the field accessed, the comparison, and

the other side of the comparison as arguments. This special call performs a multi-

value comparison against all values in the field domain of this field. If, however, the

field access is not used in such a comparison, we instrument it with a simple call to

monitor field access (as done in standard Korat).

We explain the multi-value comparisons in Koratmulti that are performed

using this static data-flow analysis for the state of exploration shown in Fig-

ure 4.1(a). At this stage, the accessed fields are (root, N0.data, N0.left,

N0.right, N1.parent, N1.data, N1.left, N1.right, N2.parent,

N2.data, N2.left, N2.right, size). Like standard Korat, we backtrack

over the first few fields until we reset N1.right to null and set N1.left=N2. At
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Figure 4.1 Four intermediate states when using Korat with multi-value compar-
isons for binary search trees of three nodes. All accessed fields are shown in
“field+condition” column along with any condition deduced from static light-
weight analysis. For each field, the values to be tried are shown in “values to try”
column. Striked out values are “forwarded” based on the comparison. Current value
is shown in square brackets.
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right
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3N1

right
1N0

3N1

2N2

right

left

field+condition values to try field+condition values to try field+condition values to try field+condition values to try
root 0,[N0] root 0,[N0] root 0,[N0] root 0,[N0]
N0 .data [1],2,3 N0 .data [1],2,3 N0 .data [1],2,3 N0 .data [1],2,3
N0 .left [0],N0 ,N1 N0 .left [0],N0 ,N1 N0 .left [0],N0 ,N1 N0 .left [0],N0 ,N1
N0 .right 0,N0 ,[N1] N0 .right 0,N0 ,[N1] N0 .right 0,N0 ,[N1] N0 .right 0,N0 ,[N1]
N1 .parent=N0 0,[N0],N1 ,N2 N1 .parent=N0 0,[N0],N1 ,N2 N1 .parent=N0 0,[N0],N1 ,N2 N1 .parent=N0 0,[N0],N1 ,N2
1<N1 .data 1,[2],3 1<N1 .data 1,[2],3 1<N1 .data 1,2,[3] 1<N1 .data 1,2,[3]
N1 .left [0],N0 ,N1 ,N2 N1 .left 0,N0 ,N1 ,[N2] N1 .left [0],N0 ,N1 ,N2 N1 .left 0,N0 ,N1 ,[N2]
N1 .right 0,N0 ,N1 ,[N2] N1 .right [0],N0 ,N1 ,N2 N1 .right [0],N0 ,N1 ,N2 N1 .right [0],N0 ,N1 ,N2
N2 .parent=N1 0,N0 ,[N1],N2 N2 .parent=N1 0,N0 ,[N1],N2 size=2 3 N2 .parent=N1 [N1]
2<N2 .data 1,2,[3] 1<N2 .data<2 1,2,3, 1<N2 .data<3 1,[2],3
N2 .left [0],N0 ,N1 ,N2 N2 .left [0],N0 ,N1 ,N2
N2 .right [0],N0 ,N1 ,N2 N2 .right [0],N0 ,N1 ,N2
size=3 [3] size=3 [3]

this point, unlike standard Korat, the repOk execution in Koratmulti will not fail

because N2.parent=null (its initial value). The access to N2.parent would have

been statically instrumented with a function call. This function call is invoked

during repOk execution and that this is the first access to N2.parent. Therefore,

our optimization is applicable and we can do a multi-value comparison. We also

get as arguments the comparison (equals) and the value to compare against (null

in this case). We do a multi-value comparison of this value against all values in the

field domain of N2.parent. All invalid choices for N2.parent (that would result

in returning null) are forwarded over without backtracking and executing repOk

on them again. The only valid choice is used for further execution and we reach

Figure 4.1(b). This takes 11 repOk executions instead of 16 for standard Korat.

From there, we forward over N2.data and N2.parent fields to reach Fig-
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ure 4.1(c). Lastly, we backtrack and try all fields while forwarding over parent

and data fields to arrive at Figure 4.1(d).

This instrumentation based on static data-flow analysis and dynamically per-

forming multi-value comparison in Koratmulti using this information enables us to

significantly reduce the number of repOk executions required while still produc-

ing all valid structures. For a binary search tree with three nodes, we find all five

structures in Figure 2.1 on page 20 using 238 repOk executions for standard Korat.

Koratmulti, on the other hand, requires only 173 repOk executions.

Next, we go over all the algorithms we employ to enable multi-value com-

parisons in Koratmulti. We describe (1) the high-level Koratmulti algorithm and de-

fine marked and unmarked candidates, (2) the multi-value comparisons of a value

against all values in a field domain that mark candidates, (3) the data-flow analy-

sis that instruments the repOk predicate with calls to multi-value comparisons, and

lastly (4) discussion of correctness with respect to the standard Korat algorithm.

4.1.2 The Koratmulti Algorithm

The Koratmulti algorithm builds upon the Korat algorithm by utilizing the in-

formation that some candidates are marked. A candidate is marked when the result

of running repOk can be determined without running repOk. This determination

comes using a combination of a multi-value comparison (Section 4.1.3) on the last

accessed field and light-weight static data-flow analysis (Section 4.1.4). The data-

flow analysis determines the correlation of the return value of the repOk predicate

and the result of the multi-value comparison.

Standard Korat, after completing a repOk iteration and receiving field-

access list, picks the last accessed field and chooses the next value from its field

domain. On the other hand, Koratmulti picks the next unmarked value from its do-
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main. Marked values are either “known to succeed” meaning repOk will accept

them or “known to fail” meaning repOk will reject them. Known to succeed val-

ues are included in successful candidates directly, while known to fail values are

simply forwarded over. If there are no more unmarked values in the field domain,

Koratmulti backtracks to the field accessed before the last accessed field while clear-

ing all markings on the last accessed field. This is done because the markings are

only valid on one path.

Thus Koratmulti divides candidates into marked and unmarked candidates.

Unmarked candidates need a complete repOk execution, whereas marked candi-

dates can be accept or forwarded-over without executing repOk. This forwarding

results in much fewer repOk executions and a substantially lower execution time

per candidate considered.

4.1.3 Multi-value comparisons

Koratmulti depends on candidates being marked during the execution of

repOk predicate. These markings are done by multi-value comparisons. A multi-

value comparison compares a given value against all values in the field domain of a

field not yet accessed in the repOk predicate. If a field has already been accessed,

the given value can only be compared against its assigned value and no multi-value

comparison can take place.

A multi-value comparison is only useful if at least one of the possible re-

sults (true an false) can determine what the repOk predicate will return. This

information is gathered statically (Section 4.1.4).

The method that performs a multi-value comparison and determines if some

candidate needs to be marked helps in forwarding candidates without running

repOk and we thus call it forwardFn in this paper. The forwardFn method takes
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five arguments. Three of these arguments are for the multi-value comparison. They

are (1) the given value to be compared (e.g. 2 in if (size==2)), (2) the compari-

son operator (==,<,> etc.), and (3) the field where values in its field domain are all

compared against the given value. Two other boolean arguments are statically de-

termined (Section 4.1.4) and inform if a true result of the comparison means that

repOk will return true and if a false result of the comparison means that repOk

will return false. For example, in “if (size==2) return false;”, we cannot

mark a candidate if the comparison results in a true value, but we can mark it to

be forwarded if it results in a false value.

Algorithm 4.1 and Algorithm 4.2 gives usefn and forwardFn methods.

The useFn method is invoked for every field access in standard Korat and it builds

the field-access list. We also use it in Koratmulti to instrument all accesses except

those that classify as forward-able and are thus instrumented with forwardFn.

Algorithm 4.1: Algorithm for dynamic access monitoring (useFn)
input : Value v

1 if v is a controlled variable and not accessed before then
2 add v to field-access list;
3 end

The forwardFn function checks if the given field has not been accessed

before (like useFn). If not, it performs a multi-value comparison against all

values in the field domain of this field. If the comparison is successful and

trueForward=true (true side leads to returning constant true), it marks those

values as accepted without even running repOk on them. Similarly, if the compari-

son is false and falseForward=true (false side leads to returning constant false),

it marks them as skipped. If the initial value (as Korat initializes all fields to the first

value in their field domains) of this field is marked as accepted or skipped during
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Algorithm 4.2: Algorithm for dynamic access monitoring (forwardFn)
input : Value v, Cond c, Value otherVal, trueForward, falseForward

1 if v is a controlled variable and not accessed before then
2 forall the Values i in domain of v do
3 if result of applying c on i and otherVal is true then
4 if trueForward then
5 mark i as accepted without running repOk;
6 else if falseForward then
7 mark i to be skipped (no need to run repOk);
8 end
9 end

10 initialize v to first unmarked value;
11 end
12 end
13 return result of applying c on v and otherVal

this process, it forwards to the first unmarked (not accepted, not skipped) value. If

all values are marked, it chooses the last value and proceeds. These markings are

used by the updated Korat algorithm to forward candidates without running repOk.

4.1.4 Data-flow analysis

Standard Korat monitors all field accesses made during repOk execu-

tion. Algorithm 4.3 shows monitoring and instrumentation of field accesses using

LLVM [1]. The function useFn dynamically determines if this is the first access to

this field; in which case it is added to field-access list [10].

Koratmulti performs a more extensive analysis of the function and for load

instructions that meet a set of conditions, instruments with a call to the forwardFn

function. However, if the conditions are not met, it still instruments with the same

useFn function.
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Algorithm 4.3: Algorithm for normal Korat instrumentation
1 forall the instruction i in repOk do
2 if i is a load instruction then
3 insert call to useFn before i;
4 end
5 end

There are four sets of conditions over load instructions that we instrument.

Algorithm 4.4 gives the core algorithm using one condition for clarity, while the

other conditions are described in Table 4.1. Algorithm 4.4 iterates over all load

instructions in repOk. Each load instruction defines a new variable and provides a

starting point for def-use analysis.

Algorithm 4.4: Algorithm for light-weight def-use analysis
1 for every instruction i in repOk do
2 if i is a load instruction then
3 j = followUseChain(i);
4 if j is an icmp instruction then
5 k = followUseChain(j);
6 if k is a br instruction then
7 t = leadsToConstRet(true block of br);
8 f = leadsToConstRet(false block of br);
9 if t or f then

10 replace icmp with a call to forwardFn;
11 continue;
12 end
13 end
14 end
15 insert call to useFn before load;
16 end
17 end

We perform simple def-use analysis on this variable traversing the uses
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Table 4.1 Def-use analysis of load instructions we instrument.
No. Use-chain Description

1 load icmp br

ret constant
false

ret constant
true

either or both

A load instruction defines a variable only used by an
icmp instruction, the result of which is only used by
a conditional br instruction leading to constant return
on at least one of true and false sides.

Example:
if(size!=visited.size())
return false;

2 load icmp ret

A load instruction defines a variable only used by an
icmp instruction, the result of which is used by a ret
instruction.

Example:
return size!=visited.size();

3 load

icmp-1

and/or br

ret constant
false

ret constant
true

icmp-2

either or both

A load instruction defines a variable only used by two
icmp instructions, where the results of both instruc-
tions are only used by an and or an or instruction,
whose result is used by a conditional br instruction
leading to constant return on at least one of true and
false sides.

Example:
if (data < min || data > max)
return false;

4 load

icmp-1

and/or ret

icmp-2

A load instruction defines a variable only used by two
icmp instructions, where the results of both instruc-
tions are only used by an and or an or instruction,
whose result is only used by a ret instruction.

Example:
return data < min || data > max;

80



list provided by LLVM and check if it is eventually (e.g. after sign-extending or

bit-truncation) only used in a comparison instruction (icmp). This means that the

accessed value is directly used as one argument of a comparison. We then follow

the uses list of the result of the icmp instruction and see if it is eventually used

only in a conditional branch instruction (br). This means that the comparison is

used inside an if statement. Next, we inspect the true and false basic blocks (also

called then and else basic blocks) that the branch leads to. Each basic block is

a set of sequentially executed instructions ending with a terminating control flow

instruction. If the terminating instruction is a return instruction (ret), we determine

if a constant is returned. If a constant is returned in either the true basic block, or

the false basic block, or both, we replace the comparison with a call to forwardFn

with the original icmp operands as arguments to the function, along with boolean

parameters determining which basic block lead to returning constant.

While inserting the call to forwardFn, we ensure that the true side of the

comparison leads to the function returning true and the false side results in a false

return. If not, we invert the comparison for passing it to forwardFn and again invert

the return value from forwardFn. This simplifies the operation of forwardFn.

This high level description skims over two important details: (1) the details

of following the uses lists and (2) determining if a basic block results in returning

a constant.

Algorithm 4.5 describes the def-use analysis. To follow from one instruction

to the next, we ensure that the target instruction is the only instruction that uses

the result of the source instruction. If more than one instruction uses the result

of the source instruction, we cannot determine if the other use does not influence

the branch we will later take, and thus do not consider such a case. If the target

instruction is a cast instruction (truncation, zero extending, or sign extending), we
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repeat the algorithm to find the instruction that uses the result of the cast. Cast

instructions are common in LLVM because it is a typed language and there are no

implicit type conversions.

Algorithm 4.5: Algorithm for following def-use chain.
input : instruction i

1 if result of i has one use then
2 j = only use of result of i if j is a cast instruction then
3 return followUseChain(i);
4 end
5 end
6 return null

Algorithm 4.6 gives the algorithm for determining if a basic block leads to a

constant return. This works similar to constant propagation, except that the value to

propagate (the result of comparison) is not really constant. Assuming that the result

of comparison is known (true or false), we analyze if this result could have been

propagated to the return instruction. Sometimes it can be propagated for a true

result of the comparison, sometimes for a false result, and sometimes for both.

This information is then used by forwardFn to mark candidates after performing a

multi-value comparison.

The algorithm is used on both the true and false target basic blocks of a con-

ditional branch instruction to determine if either side results in returning a constant.

The function works by considering the last instruction in the basic block (the only

control flow instruction). If it is an unconditional branch to another basic block,

we recursively invoke the same function on the target of the unconditional branch.

If, however, the terminating instruction is a return instruction (ret), we check the

value returned. The returned value can be (1) a constant, (2) result of another in-

struction, or (3) a phi constant. A phi constant is a map from basic blocks to values

82



Algorithm 4.6: Algorithm to see if a block leads to a constant return.
input : BasicBlock b

1 i = last instruction in block b;
2 if i is ret instruction then
3 v = value returned by i after resolving phi nodes;
4 if v is constant then
5 return v;
6

7 end
8 else if i is an unconditional branch then
9 return leadsToConstantRet(target of i);

10 end
11 return null

where the value picked is based on the last basic block we were executing before a

control flow instruction jumped into this block. The value corresponding to a basic

block is again one of (1) a constant, (2) result of an instruction, or (3) another phi

constant in the source basic block. Since we know the basic block chain from the

first load instruction to this ret instruction, we recursively resolve the phi con-

stants. It is possible that we are still unable to resolve it as it may depend on which

basic block we came from before hitting the load instruction. When the returned

value is a constant or a phi constant that we were able to resolve to a constant, we

return this value.

Note that our def-use analysis is light-weight because we only attempt to

find the last use of some field before every return. We also don’t need to worry

about another earlier load instruction accessing the same field. This would have

been a consideration if we were making any decision statically. However, we delay

our decision making until we actually execute the repOk predicate. At this time,

we can easily monitor if a particular field is accessed for the first time or not (like
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standard Korat does) and use this information to enable forwarding for that access.

Table 4.1 shows all four conditions in which we instrument. Only the first

condition is used in Algorithm 4.4 to describe the core concepts. The second con-

dition is when the result of a comparison is directly returned without being used in

a branch instruction. The next two cases are when two comparisons are made on

the same field with an AND or an OR operation joining them. In such cases the

variable defined by a load instruction is used in two icmp instructions and their re-

sults are used in an and or an or instruction whose result is used in a branch leading

to a return (case 3) or directly returned (case 4). This can be easily generalized to

multiple comparisons which are then joined by and or or instructions. However,

our current implementations is limited to two comparisons.

Other limitations of our current implementation include instrumenting only

one function (repOk). Any called helper functions are not instrumented. Addition-

ally, we only support integer comparisons. These are, however, not fundamental

limitations of the algorithm and more a matter of defining the scope of the imple-

mentation.

4.1.5 Correctness

For correctness, note that the candidates considered by Koratmulti are the

same as those considered by standard Korat. However, our candidates are di-

vided into unmarked (complete repOk execution) and marked (identified during

forwardFn as accepted or rejected without running repOk again) and the union of

marked and unmarked candidates is the same as standard Korat. Thus, it suffices to

show that marked candidates are correctly classified as accepted or rejected.

For marked candidates, we divide repOk into two parts. The first part

goes from the start of repOk to the forwardFn call and the second part from the

84



forwardFn call to the ret statement.

We determined using static data-flow analysis that a true or a false return

from forwardFn would lead to a true or a false return from repOk. Thus we do

not need to execute the second part once we know the return value from forwardFn.

On the other hand, for every marked candidate we do have an execution of

the first part. That execution touched everything except the last field. This execution

invoked the instrumented forwardFn and marked candidates based on the compar-

ison of the last accessed field. This execution is shared by all candidates who only

vary in this last accessed field. Thus we have a dynamic execution of the first part

(shared by more than one candidate) and a static knowledge of the behavior of the

second part. Thus, Koratmulti generates the same set of valid inputs as the standard

Korat algorithm.

4.1.6 Evaluation

We evaluate Koratmulti on two metrics: the reduction in the number of repOk

executions, and the time it takes to complete Korat analysis.

We use five complex structures to evaluate our technique. For each structure,

we consider five different sizes. For each example, we generate structures of exactly

the given size with unique elements. Our experiments were run on machines with

two Intel Xeon 2.93GHz 6-core processors and 24GB of memory.

To instrument a structure whose definition (along with repOk and finitize

methods) is given in struct.cc we use the following command:

llvm-g++ --emit-llvm --no-exceptions -c struct.cc -o struct.o &&

llvm-ld -disable-inlining -disable-internalize struct.o korat.o -o korat &&

opt -load forward.so -forward struct.bc | opt -O3 | llc -o struct.S && g++
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struct.S -o struct

The command works in the following stages: (1) translate user code in

struct.cc to LLVM bit code, (2) combine the user code with the Korat algorithm

in korat.o, (3) apply the LLVM analysis in shared library forward.so required by

multi-value comparisons, (4) optimize instrumented code (inlining etc), (5) convert

to native assembly, and finally (6) compile to native binary.

The structures we chose to test are min heap, dynamic order statistics, binary

search tree, red-black tree, and sorted doubly linked list. Red-black trees are height

balanced binary search trees using node colors and restrictions on assignment of

that color. Dynamic order statistics are red-black trees where the nodes are further

augmented with the size of the sub-tree rooted at them. The problem of order

statistics is concerned with returning the kth smallest number in a set. For example,

the minimum element in a set of n elements is the first order statistic while the

maximum is the nth order statistic. Dynamic order statistics enable retrieving any

order statistic in logarithmic time. All these structures form the basis of complex

software. These structures have been used in evaluating other software analysis

techniques including the original Korat algorithm [10].

The results of our experiments are given in Table 4.2. Our speedup ranges

from 1.6X to 4.7X. This is pictured graphically in Figure 4.2.

4.2 Focused Korat

Systematic black-box testing using constraints can often require generating

and executing a large number of tests, which can be expensive. This section presents

a novel technique to selectively reduce the number of test cases to be generated. Our

technique applies across a class of structural constraint solvers. Experimental re-
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Table 4.2 Comparison of Koratmulti with standard Korat algorithm for structural
constraint solving.

Valid Standard Korat Korat with multi-value comparisons
Subject Size Structures Explored Time [s] Explored Time [s] Speedup

9 896 64,401 0.14 19,781 0.04 3.5X
10 3,360 316,369 0.85 94,538 0.26 3.3X

Min heap 12 79,200 9,277,511 34.74 2,961,691 11.50 3.0X
13 506,880 55,005,301 4:04.25 18,545,942 1:23.24 2.9X
14 2,745,600 356,649,476 29:47.13 120,077,299 10:15.61 2.9X

3 2 3,356 0.02 1,654 0.01 2.0X
4 4 42,294 0.44 20,115 0.21 2.1X

Dynamic order statistics 5 8 415,922 6.74 188,321 3.06 2.2X
6 16 3,646,604 1:27.68 1,558,574 37.24 2.4X
7 33 28,564,440 15:11.70 11,502,100 6:19.81 2.4X
6 132 49,524 0.46 30,469 0.28 1.6X
7 429 279,427 3.50 166,762 2.10 1.7X

Binary search tree 8 1,430 1,555,219 25.50 906,048 14.77 1.7X
9 4,862 8,562,721 2:55.95 4,891,974 1:39.93 1.8X

10 16,796 46,729,370 19:47.34 26,269,077 10:58.52 1.8X
4 4 20,482 0.19 8,397 0.08 2.4X
5 8 161,122 2.40 53,956 0.79 3.0X

Red-black tree 6 16 1,259,268 26.83 360,500 7.59 3.6X
7 33 7,962,572 3:52.97 1,938,263 55.66 4.2X
8 56 51,242,194 32:21.49 11,077,150 6:55.75 4.7X

15 1 1015748 19.20 294,897 5.88 3.3X
16 1 2,162,624 44.75 622,576 13.83 3.2X

Sorted doubly linked list 17 1 4,587,452 1:49.12 1,310,703 32.65 3.3X
18 1 9,699,256 4:12.08 2,752,494 1:14.80 3.4X
19 1 20,447,156 9:45.19 5,767,149 2:52.19 3.4X

Average speedup 2.9X
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Figure 4.2 Time taken by Korat with and without multi-value comparisons. Num-
ber is parenthesis is the size of structures generated.
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sults show that the technique enables an order of magnitude reduction in the number

of test cases to be considered.

We call this technique focused generation [98] and develop it for Korat. Our

technique addresses the concern of “what to generate” in a constraint solver.

Focused generation means bounded exhaustive test generation where the

exhaustive nature of test generation is focused on specific fields. For every pos-

sible assignment for the fields which are focused, the generation should find only

one valid assignment for the remaining fields. This allows optimizing bounded ex-

haustive testing when objects are composed of objects of different classes that have

been tested before. To illustrate, consider the binary search tree discussed above

with some library class (e.g. Set) as data instead of integer data. Baseline Ko-

rat would generate the entire structure at the concrete level (including exhaustively
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testing the inner Set class). Focused generation allows more efficient testing of the

subject class assuming the correctness of the classes it depends on. The knowledge

of an abstraction function suffices for an effective application of this optimization

in this scenario.

Focused generation also allows focusing generation towards some aspect

of a data structure. For example in our tests we focus generation on the structure

of a sorted singly linked list. Thus for a given node structure we get one sorted

assignment of numbers however big the allowed range of numbers is. Without

focused generation we will get a different test case for every possible sorted sub-

sequence of the given range.

Since focused generation produces a smaller set of results, it cannot be

strictly called an optimization of Korat algorithm. However, Korat provides no

way of bounded exhaustive testing (BET) for a structure without doing BET for

sub-structures. It also provides no way of doing BET for one aspect of the structure

but not others. In such cases, we need to filter the results to reduce test suite size and

retain the desired tests. Focused generation is an optimization for this procedure of

applying Korat and filtering results.

To illustrate how to focus generation on an aspect of a structure, consider

the same example of an ordered binary search tree. If we want to test some function

that operates on structural aspect of the binary search tree, we may want to gen-

erate one binary search tree of each shape with valid data assignments. However,

Korat will try to generate all possible data assignments for each valid tree shape.

Focused generation can prune out these multiple assignments, leaving a single valid

assignment for data. This results in fewer explored states and faster generation. For

focused generation to work, the user marks the fields out of focus in the finitization.

By default, all fields are in focus, and that means the same behavior as standard
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Korat. For ordered binary search trees up to three nodes, standard Korat finds 15

valid candidates after exploring 178 candidates. All the trees of size 1 and 2 are

repeated thrice with different data values. Focused generation only produces nine

candidates; each of the trees in Figure 2.1 with one valid assignment. These nine

trees are found after exploring 127 candidates. Thus an additional 51 candidates

are pruned out.

4.2.1 Implementation

Korat with focused generation is shown in Algorithm 4.7. This modified

Korat works on unmodified repOk constraints. The function VALIDCANDIDATE re-

ferred in Algorithm 4.7 can take any action on valid candidates, like count them,

store them, or directly test some code using them.

To implement focused generation, we introduce a onesol array and a

lastvalid boolean. On line 1 in Algorithm 4.7 the variable lastvalid is ini-

tialized to false and on line 5 it is assigned the result of last candidate checked.

The onesol array is a boolean array containing one entry for each field. To enable

this optimization, the user has to mark the field as requiring just one solution (out

of focus). This is done using an additional parameter when adding the field in the

finitization. This additional parameter results in the corresponding index in onesol

array to become true. The check on line 10 in Algorithm 4.7 sees if the last candi-

date was valid and the user wanted only one solution for the current field, then skip

over all remaining values of this field and move to the field accessed before it. If

the previous field also needed just one solution, its values are also skipped and we

move on. Thus significant portions of state space are pruned out and a lot fewer test

cases are generated. All this requires no change in the predicate itself.
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Algorithm 4.7: Korat with focused generation. A new array onesol re-
members which fields need only one solution. Global lastvalid remem-
bers if the last candidate checked was valid or not.

input : candidateV

1 candidate← BuildCandidate(candidateV);
2 (predicate, accessFields, masked)← repOk(candidate);
3 if predicate then
4 ValidCandidate(candidate);
5 end
6 for i ∈ accessFields do
7 pruning[i]← false;
8 end
9 while Size(accessFields)>0 ∧ candidateV[Top(accessFields)]=0 do

10 for i← 1, NonIsoMax(candidateV, accessFields) do
11 if not masked[Top(accessFields), i] then
12 candidateV[Top(accessFields)]← i;
13 Korat(candidateV);
14 end
15 end
16 for i←0, MAXDOMAININDEX(Top(accessFields)) do
17 masked[Top(accessFields)← false;
18 end
19 candidateV[Top(accessFields)]← 0;
20 pruning[Top(accessFields)]← true;
21 Pop(accessFields);
22 end

91



Table 4.3 Results of running Korat with and without focused generation on Sorted
Singly Linked List and Red-Black Trees. For each structure, 4 different sizes are
tried. Timeout is set to 10 minutes.

Without Focussed Generation With Focussed Generation
Subject Size Found / Explored Found / Explored

Sorted Singly Linked
List

20 1048575 / 179307145 20 / 1770
25 TIMEOUT 25 / 3275

100 TIMEOUT 100 / 176850
200 TIMEOUT 200 / 1373700

Red Black Tree

10 14101 / 4901265 377 / 1903225
11 40074 / 20130233 707 / 7301092
12 112813 / 85201572 1395 / 28239078
13 TIMEOUT 2835 / 109591533

4.2.2 Evaluation

To evaluate focused generation, we have implemented it in Korat for C++.

Our implementation can enable or disable focused generation. With it disabled,

we get behavior identical to standard Korat. We compared outputs with the Java

implementation to ascertain correctness. The experiments were run on a Pentium

2.8GHz processor with 4GB memory running Linux.

To see the effect of focused generation, we take a sorted singly linked list

and a red-black tree. We focus testing on structural correctness and not on data or-

dering requirement. Thus we find all structures with one satisfying data assignment.

Results of this experiment are given in Table 4.3.

For both these structures, we took Standard Korat and Korat with Focused

Generation. We test four sizes of each structure on both versions of Korat. We

compare how focused generation improves Korat in terms of time and in terms of

reducing valid candidates generated.

We observe that focused generation, where applicable, can improve time

drastically in some cases. For sorted singly linked list, the benefit is enormous
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because we can avoid all sorted sub-sequences of data. For red-black trees, focused

generation takes about three times less time.

The other observation is that because focused generation is generating fewer

candidates, the actual testing time will reduce. For example test execution phase

for red-black tree of up to size 14 will run 154 times faster in case of focused

generation. This is assuming that all generated tests are used for testing.

4.3 Parallel Korat

This section presents PKorat [95], a new parallel algorithm that parallelizes

the Korat search. PKorat explores the same state space as Korat but considers sev-

eral candidates in each iteration. These candidates are distributed among parallel

workers resulting in an efficient parallel version of Korat. Experimental results

using complex structural constraints from a variety of subject programs show sig-

nificant speedups over the traditional Korat search.

For efficient search, Korat uses a dynamic analysis of the predicate: Ko-

rat search prunes large portions of the input space by monitoring predicate execu-

tions on candidate inputs. While the dynamic analysis enables efficient pruning, it

renders the Korat search inherently sequential: without executing the predicate on

a candidate input, Korat cannot determine the next candidate input. Moreover, a

simple partitioning of the state space and a distributed search does not yield high

speed-ups since it is not possible to predict which parts of the state space would be

pruned and exploring those parts is simply redundant.

Our key insight is that even though it is not feasible to fast-forward Ko-

rat search effectively, the systematic exploration of the input space can still be

parallelized by exploring non-deterministic field assignments in parallel. PKorat
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search backtracks by generating several candidate inputs that are explored in paral-

lel. A key aspect of PKorat is that it explores exactly the same number of candidates

that Korat does and still enables a scalable parallel implementation. PKorat uses a

master-slave configuration to implement its parallel search. When delegating explo-

ration to a slave processor, PKorat provides a small amount of meta-information that

prevents different slaves from exploring the same candidates and avoids redundant

exploration. Misailovic et al. [77] provided techniques that efficiently parallelize

test execution, while test generation was mostly sequential (Section 7.3.1).

4.3.1 Illustrative Example

Korat produces only one candidate vector after testing the previous one.

PKorat, on the other hand, produces a list of candidate vectors after testing each can-

didate. Furthermore, all these candidates are produced by Korat as well. The work-

ing of PKorat on the same example as in Section 2.2.1 is given below. The equiva-

lence of candidates explored by Korat and PKorat is discussed in Section 4.3.2.4.

Consider that PKorat is working on the candidate given in Sec-

tion 2.2.1 and the ordered list of accessed fields during repOk is

〈root,N0.le f t,N0.right,N1.le f t,N1.right,size〉.

PKorat, like Korat, finds the maximum value for size which in this example

is 3. As it already maximum, it is reset to minimum (which is also 3) and maximum

value for N1.right is calculated and found to be N2. At this point, PKorat differs in

that it generates three candidate vectors with the value of N1.right set to N0, N1, and

N2, respectively. It then finds the maximum value of N1.le f t and produces three

more candidates with value of N1.le f t set to N0, N1, and N2, respectively. Another

three vectors are produce by setting N0.right to N0, N1, and N2, respectively. When

we observe that N0.le f t is not at index 0 we have to stop since the current vec-
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tor would have been produced in parallel by a similar previous step which catered

N0.le f t and anything before it. After producing all these nine candidate we can dis-

tribute them and test them with a predicate in parallel. Each distributed task consists

of evaluating a candidate and distributing the subsequent candidates again.

The motivation behind producing all these candidates is based on the fact

that Korat cannot prune a candidate all of whose non-zero fields are accessed. Us-

ing the ordered list of accessed fields, we make a candidate by changing some field

while keeping everything accessed before this field unchanged, and everything ac-

cessed after it, pointing to the first value in their domain. Every non-zero field in

this candidate would be accessed, because we assume repOk is deterministic and

every field accessed before the changed field has the same value. Therefore Korat

does not prune it. Furthermore stopping at first non-zero accessed fields protects

against the same candidate produced out of two different candidates. Both of these

facts are formally proved in Section 4.3.2.4.

Figure 4.3 shows how the 63 candidates explored by Korat are explored by

PKorat. The numbers represent the order in which Korat explores them sequentially.

Note that the example candidate 27 produces nine candidates as discussed above.

Given enough processors and ignoring overheads, the parallel algorithm can

complete test generation in 5 units of time instead of 63 units. A quad-core can ide-

ally complete the task in 18 units of time giving 3.5X speedup. The actual speedup

is lower due to communication overheads.

4.3.2 Algorithm

PKorat uses a master slave configuration [68], where processor 0 is always

designated as the master processor. It contains a work queue of candidate vectors.

Every other processor acts as slave and contacts the master for a candidate vector
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Figure 4.3 Tree of explored candidates showing Parallel Korat search progress,
where the numbers represent the sequential order of their exploration in standard
Korat (last level nodes aggregated). Note that given enough processors and ignoring
overheads, PKorat can ideally explore this state space in 5 units of time, whereas
Korat would take 63. Even a quad-core can complete in 18 units of time giving
3.5X speedup.
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to process. After processing it send a list of candidate vectors back to the master,

and the master enqueues them.

4.3.2.1 Master Algorithm

Algorithm for master process is given in Algorithm 4.8. The master pro-

cessor maintains a list of free slaves (slaveQ) and a list of pending candidate vec-

tors (workQ). It initializes work queue with an all zero candidate vector (ZeroV). It

then loops while receiving and processing slave requests.

There are two types of requests. A QUEUE request and a DEQUEUE request.

The former is used to add candidate vectors to the work queue, while the later is

used to fetch a candidate vector. If a candidate vector is not readily available, the

slave is remembered in slave queue. Whenever candidate vectors become available,

they are sent to these free slaves instead of being queued in work queue. The algo-

rithm terminates when every slave is in slave queue. At this stage the work queue
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Algorithm 4.8: Algorithm for master processor in PKorat. It keeps a
queue of waiting slaves and a queue of candidate vectors. On a dequeue
request, a candidate vector is sent if available, otherwise the slave goes
in waiting queue. On a queue request, the candidate vector is sent to
waiting slaves, or stored in candidate queue if none are waiting. The
algorithm terminates when every slave is in waiting queue.

1 workQ← CREATEQUEUE();
2 slaveQ← CREATEQUEUE();
3 QUEUE(workQ, ZeroV);
4 while SIZE(slaveQ) 6= SlaveCount do
5 (slave, cmd, candidateV)← RECV(any);
6 if cmd = QUEUE then
7 if EMPTY(slaveQ) then
8 QUEUE(workQ, candidateV);
9 else

10 slave′← DEQUEUE(slaveQ);
11 SEND(slave′, WORK, candidateV);
12 end
13 else if cmd = DEQUEUE then
14 if EMPTY(workQ) then
15 QUEUE(slaveQ, slave);
16 else
17 candidateV← DEQUEUE(workQ);
18 Send(slave, WORK, candidateV);
19 end
20 end
21 end
22 forall the s← slaveQ do
23 SEND(s, EXIT);
24 end
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must also be empty. As soon as it happens, it sends all slaves an EXIT message.

4.3.2.2 Slave Algorithm

Slave processors are responsible for processing a given candidate vector and

producing zero or more candidate vectors to be processed next. Whereas the mas-

ter processor is only concerned with seamless communication, novel contributions

of this dissertation manifest in slave processing. The algorithm is given in Algo-

rithm 4.9.

Every slave sends the master processor a DEQUEUE request, receives a can-

didate vector (candV), processes it, possibly sends back a QUEUE request, and then

repeats the whole thing. It terminates when a DEQUEUE request results in an EXIT

response from the master.

To process a candidate vector, the slave first converts the candidate vector

to an actual candidate C++ data structure using BUILDCANDIDATE. This function

not given here, is identical to the one used in Korat. It works by assigning all fields

of all objects involved according to domain indices stored in the candidate vector.

Section 2.2.1 shows the assignments for the example discussed in Section 2.2.1 and

Section 4.3.1.

The predicate REPOK is then used to validate the given candidate. VALID-

CANDIDATE is invoked if this candidate is valid. This function, also not given here,

is a placeholder for any processing of valid candidates. For example, it can count

the number of valid candidates, store the candidate in a file for later use, or even

invoke the actual program for which these tests are generated. The last two options

are similar in nature to offline and online test execution in previous work on par-

allelizing Korat [77]. However, as discussed before, our solution does not share its

limitations.

98



Algorithm 4.9: Algorithm for slave processors in PKorat. It builds a
C++ object structure using BuildCandidate. Then tests it using repOk.
Then for all accessed fields up to a field pointing to a non-zero index,
it generates candidates for all non-zero indices of that field up to the
maximum index given by NonIsoMax. NonIsoMax is given in Algo-
rithm 4.10

1 Send(master, DEQUEUE);
2 (cmd, candV)← Recv(master);
3 while cmd = WORK do
4 candidate← BuildCandidate(candV);
5 (pred, accV)← repOk(candidate);
6 if pred then
7 ValidCandidate(candidate);
8 end
9 while Size(accV)>0 ∧ Top(accV)=0 do

10 field← POP(accV);
11 for i← 1, NonIsoMax(candV, accV, field) do
12 candV[field]← i;
13 SEND(master, QUEUE, candV);
14 end
15 candV[field]← 0;
16 end
17 SEND(master, DEQUEUE);
18 (cmd, candV)← RECV(master);
19 end
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Lastly, candidate vectors to be explored next are found. The algorithm

works using the accessed fields stack (accV) returned by REPOK. This contains

all fields accessed by REPOK in making its decision, in the order of first access.

The slave pops fields one by one off this stack until a non-zero field is found. For

each popped field, it produces candidate vectors for all non-zero valid values of this

field. The maximum valid value is given by NONISOMAX and is discussed in Sec-

tion 4.3.2.3. It stops at a non-zero field to avoid producing the same candidates as

some other slave would do. This is discussed and proved in Section 4.3.2.4.

Actual implementation aggregates candidate vectors to be sent back to mas-

ter in fewer messages. It also uses double buffering at client so that a candidate

vector can be received and ready to be processed while the previous one is being

processed. These are considered as implementation optimizations and excluded

from the algorithm description here, to emphasize key contributions of this work.

4.3.2.3 Non-isomorphism

Isomorphic candidates are candidates that only differ in the identities of

their objects. By swapping all members of any two objects and then swapping

all references to these objects, an isomorphic copy of the original structure can be

formed. For example, isomorphic copies of trees in Figure 2.1 can be formed by

using N1 as the root, and N0 in place of N1. Most programs do not make deci-

sions based on object identities (e.g. their memory address) and therefore testing

isomorphic copies is a waste of time.

Our algorithm for avoiding isomorphic copies is identical to Korat [10]. A

simplified version assuming that NULL is always tested for object fields and as-

suming no polymorphic fields (fields that take objects of more than one type) is

given in Algorithm 4.10. For non-primitive fields the algorithm checks all previ-
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ously accessed fields having the same domain, and finds the maximum index ac-

cessed (touched). If any untouched objects are left, it allows one of them to be

tried.

Algorithm 4.10: Helper function for slave processors in PKorat. It re-
turns the maximum valid index for primitive fields. For non-primitive
fields it ensures that no more than one untouched object is tried. An
object is touched if a previously accessed field with the same domain
points to it.

input : candV, accV, field

1 m←MaxDomainIndex(field) ;
2 if NonPrimitive(field) then
3 touched← 0;;
4 forall the i ∈ accessedV do
5 if SameDomain(i, field) then
6 touched←Max(candV[i], candV[field]);
7 end
8 end
9 m←Min(m, touched+1)

10 end
11 return m

Even though the basic algorithm for isomorphism avoidance is identical to

Korat [10], there is an inherent efficiency in PKorat. Korat needs to repeat this

procedure to find the valid maximum in every iteration. It optimizes this by us-

ing caching, so that the maximum for a given field, with the same values of fields

accessed before it, is calculated only once. Our parallel algorithm however gener-

ates all such candidate vectors at the same time. Therefore it only calculates the

valid maximum once for each field with the same values accessed before it and no

caching is needed either.
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4.3.2.4 Completeness and Soundness

We prove completeness and soundness of PKorat by proving equivalence

with Korat for a deterministic repOk function. Completeness and soundness of Ko-

rat has been proven elsewhere [10]. We prove equivalence by showing that PKorat

explores a candidate if and only if Korat explores it.

Proof. PKorat pops fields from accessed field stack and stops at the first field set to

a non-zero index. This is because PKorat tries all non-zero indices at the same time.

Thus, the time this field was set to the current non-zero value, all other mutations

would have been tried as well. Similarly, mutation of previous fields would have

either been produced at the same time or would have been produced at some pre-

vious invocation by applying the argument recursively. Therefore PKorat produces

the immediate next candidate (according to Korat sequence) either at the same time

or has produced it previously. Therefore every candidate produced by Korat is pro-

duced by PKorat as well. This proves the if direction.

A candidate is pruned out by Korat only if there is another explored candi-

date with the same values for all fields accessed by repOk. This explored candidate

has all non-accessed fields set to zero index. This is because Korat generates a

new candidate by mutating only the last accessed field. For a deterministic repOk,

this implies that exact same fields will be accessed again and possibly some more.

When Korat backtracks, fields up to the backtracked field must be accessed and

possibly some more. Thus all fields that are not certain to be accessed are at zero

index. Therefore, if all non-accessed fields of a candidate are at zero index, it can-

not be pruned out by Korat. Since PKorat only produces such candidates, we can

infer that they are produced by Korat as well. This proves the only if direction and

completes our proof.
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4.3.3 Evaluation

To evaluate the efficiency of PKorat, we implemented it in C++ using Mes-

sage Passing Interface (MPI) [100] library. We also implemented the serial Korat

algorithm in C++ so that it can be run on the same machines and meaningful perfor-

mance comparison can be made. We have run the experiments on a Linux cluster

provided by Texas Advanced Computing Center (TACC). The cluster consists of

1,300 nodes, with 2 dual core processors per node, for a total of 5,200 cores. The

serial tests were run on a single core of this machine while the parallel runs used

more cores.

Our test subjects include standard data structures such as a singly linked list,

a binary tree (as given in Section 4.3.1), and a red-black tree. We also test directed

acyclic graphs (DAG) to compare performance with previous work and to discuss

issues with isomorphic graphs. We then give a novel application for automated

generation of all valid Java class hierarchies with a given number of classes and

interfaces.

We run our experiments with various number of processors to show the

scalability of our algorithm. For each experimental run, we give the speedup from

serial version and the clock time for the execution. We discuss specific details and

experimental observations in the following Sections.

4.3.3.1 Singly Linked Lists, Binary Trees, and Red-black trees

We test PKorat and compare it to Korat for singly linked lists, binary trees,

and red-black trees. These standard structures have been commonly used to eval-

uate the performance of algorithms for generating structurally complex test inputs.

This experiment shows the benefits of using parallel processing for generating these

structures.
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Table 4.4 Results of Korat and PKorat for a number of different data structures. For
each parallel run, there is one master and the rest are slaves. When the subject data
structure has many nodes, the parallel versions give the most benefit, up to 49.5X
on 64 nodes. Quad-core performance in all cases is exceptional, considering that
only three processors are actually working on candidates it is between 1.9–2.6X.

Subject Proc Time (s) Speedup

Singly Linked
List (500 nodes)

Serial 1387 1.0X
4p 523 2.6X

16p 108 12.8X
64p 28 49.5X

Binary Tree
(13 nodes)

Serial 480 1.0X
4p 250 1.9X
8p 120 4.0X

16p 105 4.6X

Red Black Tree
(10 nodes)

Serial 347 1.0X
4p 136 2.6X
8p 82 4.2X

16p 77 4.5X

Directed Acyclic
Graph
(7 nodes)

Serial 1163 1.0X
4p 544 2.1X
8p 318 3.7X

16p 284 4.1X

Java Class
Hierarchies
(8 nodes)

Serial 149 1.0X
4p 71 2.1X
8p 45 3.3X

16p 39 3.8X
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For singly linked lists, we were able to explore 500 node lists in a reasonable

time. Using PKorat for such big structures proved the most beneficial. We were able

to get 49.5X speedup with 64 processors. Due to complexity of state space search

for binary tree and red-black tree, Korat is able to search 13 node for the former

and 10 nodes for the later within a 30 minute limited we posed. They showed

scalability up to 16 processors. If we had more nodes like singly linked lists, the

speedup would be better. However the clock time to run the experiment would also

be much more.

Note that communication costs rise with more nodes. That is because when

processors are allocated from a big cluster, they are not always close together and

there is a single master to communicate to. Therefore, even though PKorat cannot

deteriorate in performance with more processors, it does deteriorate in practice after

an optimal number of processors due to increased average node to node communi-

cation time.

4.3.3.2 Directed Acyclic Graphs (DAG)

Directed Acyclic Graphs (DAG) can be represented as shown below.

class DAG {
class Node {

std::vector <Node*> children;
};
std::vector <Node*> nodes;

};

To verify the acyclicity constraint, we can do a depth first search from each

starting node and find if any node can be reached twice. This scheme, however,

leads to a number of equivalent inputs, i.e. structures that are different at the con-

crete level but represent the same DAG. Detailed discussion of this topic can be
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found in previous work [77], which also discusses an optimized repOk. This opti-

mized repOk is more restrictive and would even reject some valid graphs. The end

result is fewer generated graphs without missing any unique graph. The algorithm

is based on descendant counting and ordering.

We use a very simple and less compute intensive approach that results in

even fewer generated graphs. We write a repOk that only accepts topologically

sorted graphs. Furthermore, nodes in any array are ordered in increasing order of

some identifier. It is easy to prove that this approach generates all graphs since

every DAG can be topologically sorted. But equivalent graphs are still produced as

topological sorting of a DAG is not unique. For a DAG of six nodes, a repOk that

accepts every valid graph explores 16,216,503 structures and declares 1,336,729 as

valid. The optimized repOk [77] explores 2,628,140 structures with 21,430 valid

instances. Our simple topological sort based repOk explores merely 517,743 struc-

tures but validates 32,768 of them. Thus generation is much faster but testing would

be slower due to more test cases generated than previous work. For comparison,

note that the actual number of non-isomorphic graphs of size 6 is only 5,984 [77].

Results show that we can more than double the speed on a quad-core. Note

that only three processors are actually evaluating candidates on a quad-core, so

the speedup on 2.1 of a maximum possible of 3 is actually significant. Performance

keeps on improving for more processors until speedup crosses 4. After that, enough

parallelism is not generated to exploit additional processors. Rise in average com-

munication costs actually decreases speedup for more processors.

4.3.3.3 Java Class Hierarchies

We use Korat to generate all valid Java programs with a given number of

classes and interfaces. We then show the performance gains with our parallel al-
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gorithm. Automated generation of valid programs can be very useful in testing of

compilers and associated tools. We define the three classes for this experiment.

class JavaClass {
JavaClass* extends;
std::vector <JavaInterface*> implements;

};
class JavaInterface {

std::vector <JavaInterface*> extends;
};
class JavaProgram {

std::vector <JavaClass*> classes;
std::vector <JavaInterface*> interfaces;

};

A JavaProgram class whose lone instance represents the program to be gen-

erated. JavaClass and JavaInterface classes representing classes and interfaces, re-

spectively. Finitization puts bounds on the number of classes and interfaces. The

repOk function checks that the classes form a valid class hierarchy. One of the

results produced is shown here.

public interface I1 {}
public interface I2 {}
public class C1 {}
public class C2 extends C1 implements I1, I2 {}

This problem is similar to directed acyclic graphs with some additional

checks. These additional checks allow exploring a slightly larger state space in

less time. We can see that quad-core performance is still similar at more than twice

the speed. While the maximum speedup attained is around 4. For more nodes, the

maximum speedup is more, and less for less nodes. Thus the bigger the problem

space, the bigger the potential speedup.
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Chapter 5

Constraint-driven staged testing

This chapter describes the Pikse suite of techniques for improving

constraint-driven analysis for combined black-box and white-box testing. We de-

velop our techniques in the context of the Korat algorithm and symbolic execution.

Specifically, we consider the problem of testing programs with preconditions (Sec-

tion 5.1) and introduce staged symbolic execution, where such programs are tested

in stages using a combination of black-box and white-box techniques. Staged sym-

bolic execution was initially presented at SAC 2012 [96].

5.1 Testing in the presence of pre-conditions

The problem of test generation using pre-conditions has been studied in var-

ious research projects over the last decade [10, 37, 64, 76, 91] using two primary

approaches: black-box testing and white-box testing. In black-box testing [10, 37,

76], the pre-condition is taken in isolation of the method under test and used to enu-

merate valid concrete inputs, which are later used to test the method. The key ad-

vantage of this approach is its ability to generate dense suites, which allow bounded

exhaustive testing, which has been shown to be effective at finding bugs in a variety

of applications, including compilers [38], refactoring engines [27], service location

architectures [76], and fault-tree analyzers [106]. A basic limitation of this approach

however is the need to generate a large number of tests and the need to run each of

those tests against all methods under test — even if for certain methods, many tests
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are equivalent.

In contrast, in white-box testing, the program “if (repOk()) m();” is

directly used for test generation, e.g., using symbolic execution [64, 91]. The key

advantage of this approach is its ability to directly explore a large number of paths in

the method under test and to generate test suites that achieve high code coverage and

likely contain fewer tests than black-box approaches. A basic limitation of this ap-

proach however is the need to repeatedly consider symbolic execution of the repOk

method for each method under test – by construction, symbolic execution must ex-

ecute “if (repOk()) m();” for each m that has repOk as its pre-condition. Thus,

this approach requires enumeration of valid inputs from scratch for each method

under test — even if certain methods have the same pre-condition. While re-use of

concrete inputs generated for one method, say m, to test another method, say m′, is

possible, this white-box approach for method m then degenerates into a black-box

approach for method m′.

We present a novel approach [96] to increase the efficiency of symbolic exe-

cution for systematic testing of object-oriented programs. Our insight is that we can

apply symbolic execution in stages, rather than the traditional approach of applying

it all at once, to compute abstract symbolic inputs that can later be shared across

different methods to test them systematically. For example, a class invariant can

provide the basis of generating abstract symbolic tests that are then used to sym-

bolically execute several methods that require their inputs to satisfy the invariant.

We present an experimental evaluation to compare our approach against KLEE, a

state-of-the-art implementation of symbolic execution. Results show that our ap-

proach enables significant savings in the cost of systematic testing using symbolic

execution.

We specifically consider the problem of how to use symbolic execution to
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systematically enumerate inputs for a C++ method m that has a pre-condition p,

which is also written in C++ as a repOk predicate, i.e., a method that inspects its

inputs to check the pre-condition and returns true if and only if it is satisfied. Our

goal is to provide efficient and effective enumeration of valid inputs for m, i.e.,

inputs that satisfy the pre-condition. The key technical challenge in solving this

problem is to lead symbolic execution into the body of m, which must be preceded

by an invocation of repOk, since correct behavior of m requires the pre-condition to

hold. Thus, symbolic execution must be performed on the program “if (repOk())

m();”.

We apply symbolic execution in stages. The first stage performs symbolic

execution of repOk to generate abstract symbolic tests, which are object graphs

that have symbolic components defined by constraints, akin to path conditions in

symbolic execution. Thus, one abstract symbolic test represents (possibly) many

concrete tests, and the suite of abstract symbolic tests compactly represents a likely

much larger suite of concrete tests. The second stage takes, in turn, each method

under test that has the same pre-condition (as defined by repOk), and symbolically

executes it using each abstract symbolic test.

Symbolic execution during the second stage dynamically expands each ab-

stract symbolic test into a number of concrete tests based on the control-flow of the

method under test. Methods that require more tests due to complex control-flow are

tested using more tests and methods that require fewer tests are tested against fewer

tests. While this control-flow-driven exploration during the second stage allows

our approach to share benefits of white-box techniques, the use of specifications in

the first stage enables our approach to share a key benefit of black-box techniques:

generation of abstract symbolic tests can proceed even before the code to test is im-

plemented, much in the spirit of test-first programming — this contrasts with other
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approaches based on symbolic execution, which a priori require an implementa-

tion of code under test. We believe our approach provides a sweet-spot for using

symbolic execution for systematic testing of methods with pre-conditions.

A major advantage of our approach is the re-use of abstract symbolic tests

across different methods. The re-use further increases in the context of software

evolution. Abstract symbolic tests are generated with respect to specifications. If

some specifications remain unchanged while code evolves, the same abstract sym-

bolic tests can be re-used for the new version of code. Thus, our approach holds

potential for significant savings in regression testing effort.

Our work opens a novel avenue for tackling the problem of scaling symbolic

execution. Our experimental evaluation demonstrates the potential of our approach

in the context of well-studied subject programs. However, abstract symbolic tests

are not limited to object graphs with constrained symbolic components. To illus-

trate, an abstract symbolic test may represent a partial XML document or a par-

tial Java program with symbolic elements that have constraints, thereby enabling a

novel approach for testing of systems that take XML or Java programs as inputs,

such as compilers and refactoring engines. We believe staged symbolic execution

and abstract symbolic tests provide precisely the technical elements that are needed

to take approaches based on symbolic execution, such as dynamic symbolic execu-

tion [16, 42, 109], aka concolic execution [91], to a higher level of efficiency and

effectiveness.

5.2 Motivational example

To exhaustively test the add method of binary search tree for three nodes

using a black-box approach, we need to store 53 tests and run 53× 4 = 212 tests
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(there are 4 distinct values that can be added to the tree). To test the same method

using symbolic execution, we do not need to provide a bound on any field.

For the add method, we write the following code and run it through sym-

bolic execution.

SearchTree b;
if (b.repOk()) { // pre-conditions

try {
b.add (x); // x is a symbolic integer
// check b using post-conditions

} catch(...) {
// report implementation bug

}
}

Based on the symbolic execution interpreter used, we may also need to add

code to explicitly mark the fields as symbolic. For example, for lazy initializa-

tion [64], we write getters functions for each reference field that lazily initialize a

field from its field domain at first access.

The essence of this technique is that test generation and test execution are

combined as one. Symbolic execution of repOk prunes invalid choices and con-

tinues to the method under test for valid choices. If the tests are concretized after

repOk, symbolic execution will provide one valid instance for each object graph.

However, it may not cover all paths in the method under test as symbolic execution

was unaware of the path condition(s) that will be formed during the execution of

the method under test.

This provides our motivation for a technique that can store abstract tests with

a symbolic state. This symbolic state should be restored when the test is executed

and non-reference fields can be concretized as needed during symbolic execution of

the method under test. Such a technique would combine the benefits of both white
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box and black box testing for methods with structurally complex inputs.

Figure 5.1 repOk symbolically executed as part of every method tested with sym-
bolic execution.

SortedList.repOk

SearchTree.repOk

SearchTree.isPreOrder Sym. Exec. Test Results

SearchTree.add Sym. Exec. Test Results

SearchTree.remove Sym. Exec. Test Results
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Figure 5.2 Staged symbolic execution of add, remove, and isPreOrder functions of binary search tree.

SortedList.repOk Sym. Exec.
Abstract Symbolic
Inputss

SearchTree.repOk Sym. Exec.
Abstract Symbolic
Inputss

SearchTree.isPreOrder Abstract Symbolic Test Driver Sym. Exec. Test Results

SearchTree.add Abstract Symbolic Test Driver Sym. Exec. Test Results

SearchTree.remove Abstract Symbolic Test Driver Sym. Exec. Test Results

Stage 1: Generating Abstract Symbolic Inputsss Stage 2: Symbolic execution of method under test
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5.3 Overview & High-level architecture

The high-level architecture of staged symbolic execution is explained with

three example methods. We consider the add, remove, and isPreOrder methods

of a binary search tree. The first two add and remove an element respectively while

the third takes a sorted linked list and checks if it contains the pre-order traversal of

the binary search tree. In Figure 5.1, the high level steps involved in their symbolic

execution are shown. The symbolic execution engine takes the class invariants for

the concerned object(s) and the method under test and explores the complete search

space. The class invariant is symbolically executed whenever a method needs a

valid object of that type.

Staged symbolic execution differs in that symbolic execution of one class

invariant is only done once. Figure 5.2 shows the high level steps involved. The

invariants are symbolically executed in one stage while the second stage reads the

explored valid results and simply proceeds with symbolic execution of the method

under test. This enables a re-use of the symbolic exploration of the class invariants.

5.4 Abstract symbolic inputs

We define an abstract symbolic input as a tuple 〈o, p〉 where o is a rooted

object graph and p is a path condition over fields in the object graph o. Figure 5.3

shows eight abstract symbolic inputs for a binary search tree with a bound of three

nodes. Each abstract symbolic input consists of a concrete object graph with a path

condition on its fields. We can generate these abstract symbolic inputs as:

SearchTree b;
if( !b.repOk())

SEE_ignore();
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Figure 5.3 Abstract symbolic inputs consist of an object graph/path condition pair.
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SEE ignore is a symbolic execution engine to backtrack the current search.

When the above code is run using a symbolic execution engine it produces all valid

object graphs along with their path conditions as shown in Figure 5.3.

An abstract symbolic test driver as a test function that utilizes abstract sym-

bolic inputs and possibly other concrete and/or symbolic inputs to invoke a method

under test. When the driver is symbolically executed, it uses abstract symbolic

inputs to run abstract symbolic tests.

To test the add method of SearchTree, our running example, we can use

the abstract symbolic test driver below.

void testSearchTreeAdd() {
SearchTree* b=regenSymObjGraph <SearchTree >

(seedListOfSearchTree);
try {

// b already satisfies pre-conditions
b->add (x); // x is a symbolic integer
// check b using post-conditions

} catch(...) {
// report implementation bug

}
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}

5.5 Creating abstract symbolic inputs

To create abstract symbolic inputs, we need to save enough information to

later reconstruct the symbolic execution state. A naive solution is to store the path

condition as is. If the underlying symbolic execution engine supports pointers, then

the path condition contains equality constraints for pointers involved in the object

graph. For other symbolic execution engines, a scheme like lazy initialization [64]

can be used. In this case, the path condition has equality constraints for integers

that choose the pointer from a pool of pointers.

We can improve the naive solution by serializing the object graph as it exists

during generation and remembering mapping of fields to variables in the path con-

dition. This would be akin to storing it as shown in Figure 5.3. However, this makes

regeneration complex. After instantiating the object graph, regeneration would re-

quire creating the symbolic variables involved in it and adding the constraints over

them.

The above solution is practical, but there is an even easier approach that

requires minimal changes in a symbolic execution engine to support abstract sym-

bolic inputs. This approach forgoes storing the path condition and object graph

separately (as shown in Figure 5.3) and only stores one solution to each path con-

dition (e.g. root = N0,N0.right = N1,N0.data = 1,N1.data = 2 etc.). Although, we

lose information in this scheme, we show in the following section that when com-

bined with the original class invariant, it is easy to reconstruct abstract symbolic

inputs. It makes generating abstract symbolic inputs much easier.

To create abstract symbolic inputs for a class C, the user only provides a
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deterministic side-effect free class invariant (repOk). The following code is auto-

matically generated and symbolically executed.

void generateC() {
C c;
if(!c.repOk())

SEE_ignore();
}

SEE ignore is a symbolic execution engine function that backtracks from

the current search. Each completed path is solved for a satisfying solution (if one

exists) and stored as an abstract symbolic input. Note that this is not the same

as using concrete tests. This concrete representation is generated by a symbolic

execution engine and when given to the same symbolic execution engine it can

be used to retrace the execution path and regenerate the symbolic state. This is

discussed in the next section.

As an additional benefit of storing a satisfying solution instead of a path

condition, we have enabled the possibility to use other tools like Alloy [55] or Ko-

rat [10] for generating tests, while still using symbolic execution to realize them

as abstract symbolic inputs. Similarly, a symbolic execution engine that supports

pointers (e.g. CUTE [91]) or one with lazy initialization (e.g. JPF [112]) can be

used for generation and another one can be used for execution that might better

support unmodified large programs (e.g. KLEE [14]). Even the programming lan-

guages used for generation and execution predicates can be different, if the class

invariant is written in both languages.

5.6 Regenerating symbolic execution state

To regenerate symbolic execution state from abstract symbolic inputs stored

as a satisfying assignments to path conditions, we introduce a new algorithm. Sym-
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bolic execution engines did not need to be modified for generating abstract symbolic

inputs because we stored them as a satisfying assignment, and symbolic execution

engines depend on the ability to solve path conditions. However for reconstruct-

ing abstract symbolic inputs, we need to modify the symbolic execution engine.

A naive solution to regenerate is to take the stored values as concrete and run the

method under test using them. However, this defeats the purpose as we cannot ex-

plore all possibilities for the method under test that were possible using the path

conditions. Thus we need to rebuild the symbolic state.

The technique we use utilizes seeds. Seeds are given to a symbolic execution

engine to start its search. A seed consists of a tuple of values which provide the

initial value for new symbolic variables formed. Some symbolic execution engines

[42, 91] collect the path constraint for a complete execution using the seed values

and then explore other branches by negating clauses in the path constraint. On the

other hand, forward symbolic execution [14, 22, 65] checks on every branch that

a satisfying seed exists to either prioritize that branch or exclude other branches

altogether. We describe our technique for forward symbolic execution. It can be

adapted for other tools as well.

Our algorithm in Algorithm 5.1 works in the context of a symbolic execution

engine. When the code under test requests loading abstract symbolic inputs, the

function REGENSYMOBJ (line 3) gets invoked. It takes the current symbolic state,

a list of seeds where each seed is a solution to one path condition, and an object

of the type to be generated. After this function returns, the fields of this object are

constrained by satisfying the class invariant.

The seed set (set of solutions to path conditions – now to be used as seeds

for new symbolic variables) in the current symbolic execution state should be empty

(line 4). If it is not empty it means a previous abstract symbolic input was not
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Algorithm 5.1: Regenerating abstract symbolic inputs — Invoked by
the user to load abstract symbolic inputs.

1 globalPruningEnabled← FALSE;
input : state, seedList, symObject

2 assert(ISEMPTY(GETSEEDSET(state)));
3 forall the f ← seedList do
4 addToSet(GETSEEDSET(state), f );
5 end

6 globalPruningEnabled← TRUE;
7 executeSymbolic(symObject→repOk);
8 globalPruningEnabled← FALSE;

Algorithm 5.2: Regenerating abstract symbolic inputs — Invoked by
symbolic execution engine whenever a new branch is seen. Branch is
pruned if it returns false. .

input : state

1 if globalPruningEnabled then
2 forall the f ← getSeedSet(state) do
3 if isSolvableUsingSeed(state, f ) then
4 return TRUE;
5 end
6 end
7 return FALSE;
8 end
9 return TRUE;
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instantiated correctly.

On lines 5-7, we load the actual seeds from a list of seeds into the seed set of

the current execution state. After that we enable pruning of unnecessary branches

(line 8) and reset it to enable exploring everything (line 10) after symbolically exe-

cuting the class invariant of the symbolic object being constructed (line 7).

The NEWBRANCH function (lines 13-23) is always called internally by the

symbolic execution engine. If it returns false, the branch is pruned out. When

pruning is enabled (line 14), it returns false (line 20) when there is no seed that

satisfies the current execution state. New constraints are formed with each new

branch, possibly resulting in some constraints becoming infeasible for every seed.

Such branches are pruned out. These have been tested when the abstract symbolic

input was generated and it turned out repOk returns false or they become infeasible.

ISSOLVABLEUSINGSEED function (line 16) checks if the current path condition is

necessarily false using the values in the given seed.

The changes required to support regenerating abstract symbolic inputs in a

forward symbolic execution engine are: (1) a set of seed values which is used by

new symbolic variables; (2) a function to decide if new branches are to be explored;

and (3) the algorithm in Algorithm 5.1 to load seed values and temporarily enable

branch pruning.

To reconstruct abstract symbolic inputs, the user invokes regenSymObj-

Graph in an abstract symbolic test driver (see Section 5.4). This invokes the internal

REGENSYMOBJ function for the current symbolic execution state. KLEE [14] – the

engine we used – supports seeds at the start of symbolic execution and allows re-

stricting explored branches to these seeds. We modified it to enable adding seeds

dynamically and restricting exhaustive branch exploration temporarily (for the du-

ration of symbolically executing the class invariant).
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5.7 Evaluation

We implemented staged symbolic execution on top of the KLEE symbolic

execution tool [14]. To evaluate our approach, we consider five methods from a bi-

nary search tree, six methods from a sorted linked list, and two methods of a binary

heap. We compare staged symbolic execution to standard symbolic execution us-

ing KLEE and black box bounded exhaustive testing using Korat. The experiments

were performed on a 2.53GHz dual core i5 machine with 8GB of memory. We

show how abstract symbolic tests enable small but effective test suites for methods

with structurally complex arguments. We also show that testing time for a set of

methods of the same type, and for methods with more than one structurally com-

plex argument is substantially reduced. The following subsections go over different

experiments we performed in detail.

5.7.1 One structurally complex argument

We test the add and remove methods of a binary search tree, a sorted linked

list, and a binary heap – all taking a single structurally complex arguments (see first

six method entries of Table 5.1).
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Table 5.1 Comparison of standard symbolic execution and staged symbolic execution.
Staged Symbolic Execution

Total Symbolic Execution Stage 1 Stage 2
benchmark max. non-equiv. Valid/Explored Valid/Explored Valid/Explored Stage 2

size1 tests2 tests ( Time ) tests ( Time ) tests ( Time ) Savings

SearchTree.add
3 375 29/92 ( 34.2s) 9/72 ( 33.1s) 29/29 ( 9.0s) 3.8X
4 5,955 99/344 ( 7m54.7s) 23/268 ( 6m26.5s) 99/99 ( 1m16.1s) 5.1X
5 76,062 351/1298 ( 87m32.4s) 65/1012 (71m24.0s) 351/351 ( 12m29.2s) 5.7X

SearchTree.remove
3 375 49/112 ( 1m00.7s) REUSED 49/49 ( 21.7s) 2.8X
4 5,955 175/420 ( 13m48.2s) REUSED 175/175 ( 3m42.1s) 3.7X
5 76,062 637/1584 (151m52.2s) REUSED 637/637 ( 38m37.8s) 3.9X

SortedList.add
6 12,012 28/56 ( 51.5s) 7/35 ( 44.9s) 28/28 ( 8.6s) 6.0X
7 51,480 36/72 ( 3m02.4s) 8/44 ( 2m58.2s) 36/36 ( 15.0s) 12.2X
8 128,790 45/90 ( 13m09.3s) 9/54 (14m01.6s) 45/45 ( 33.1s) 23.8X

SortedList.remove
6 12,012 28/56 ( 1m18.9s) REUSED 28/28 ( 8.6s) 9.2X
7 51,480 36/72 ( 4m23.4s) REUSED 36/36 ( 16.4s) 16.1X
8 128,790 45/90 ( 16m35.6s) REUSED 45/45 ( 1m04.7s) 15.4X

BinaryHeap.add
8 6,937,713 26/135 ( 1m57.2s) 9/118 ( 1m41.7s) 26/26 ( 20.1s) 5.8X
9 83,510,790 29/165 ( 3m06.6s) 10/146 ( 2m47.4s) 29/29 ( 27.6s) 6.8X

10 988,213,787 32/198 ( 4m37.0s) 11/177 ( 4m28.2s) 32/32 ( 35.1s) 7.9X

BinaryHeap.remove
8 6,937,713 13/122 ( 2m18.2s) REUSED 13/13 ( 23.1s) 6.0X
9 83,510,790 14/150 ( 3m14.9s) REUSED 14/14 ( 34.5s) 5.6X

10 988,213,787 15/181 ( 4m49.4s) REUSED 15/15 ( 41.5s) 7.0X

SearchTree.isPreOrder
2,2 375 16/70 ( 28.8s) 14/92 ( 44.0s) 16/16 ( 5.7s) 5.1X
3,3 27,636 48/310 ( 8m25.4s) 13/86 ( 39.2s) 48/48 ( 58.7s) 8.6X
4,4 2,623,995 149/1389 (157m10.9s) 28/288 ( 6m37.4s) 149/149 ( 11m23.8s) 13.8X

SearchTree.isEqual
2,2 625 16/96 ( 53.2s) REUSED 16/16 ( 8.9s) 6.0X
3,3 108,241 81/711 ( 46m37.5s) REUSED 81/81 ( 4m47.1s) 9.7X
4,4 28,100,601 TIMEOUT3 REUSED 529/529 (293m10.02s) N/A

SortedList.merge
3,3 7,056 69/119 ( 1m05.3s) REUSED 69/69 ( 15.8s) 4.1X
4,4 245,025 251/341 ( 4m36.3s) REUSED 251/251 ( 1m26.1s) 3.2X
5,5 9,018,009 923/1070 ( 24m32.9s) REUSED 923/923 ( 17m19.1s) 1.4X

SortedList.isEqual
4,4 245,025 55/145 ( 3m21.5s) REUSED 55/55 ( 24.4) 8.2X
5,5 9,018,009 91/238 ( 8m52.6s) REUSED 91/91 ( 1m03.1s) 8.4X
6,6 344,622,096 140/364 ( 25m08.0s) REUSED 140/140 ( 2m02.9s) 12.3X

SortedList.isIntersection
2,2,2 21,952 112/190 ( 2m59.1s) REUSED 112/112 ( 18.9s) 9.5X
3,3,3 10,648,000 796/1006 ( 13m28.3s) REUSED 796/796 ( 3m40.0s) 3.7X
4,4,4 6,028,568,000 TIMEOUT3 REUSED 5201/5201 ( 60m09.6s) N/A

1 All sizes from 0 up to this size are generated.
2 Total non-equivalent tests are a cross product of black box tests generated by Korat [10] for each argument using an integer data domain

equaling the total number of integers involved.
3 Timeout is set to 5 hours.
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The “Stage 2 Savings” column shows the savings in time, in comparison

to standard symbolic execution assuming that Stage 1 has been done for another

method (e.g. we are testing add and we have Stage 1 results from testing remove or

we are doing regression testing and we have Stage 1 results from a previous run).

From the results we can see that staged symbolic execution saves us from exploring

a number of states repeatedly and stage 1 results can be readily used for testing

other methods.

5.7.2 Multiple independent arguments

The last five entries of Table 5.1 are methods with two and three structurally

complex independent arguments. We consider isEqual and isPreOrder methods

of binary search tree. The former considers two binary search trees, while the later

takes a binary search tree and a sorted linked list. We also take isEqual, merge,

and isIntersection methods from a sorted linked list. The first two take two

sorted linked lists as arguments, while the last takes three sorted linked lists.

The added advantage of staged symbolic execution with multiple indepen-

dent arguments is that Stage 1 can only be run using one argument, and Stage 2

can use the results repeatedly. Standard symbolic execution has to symbolically

explore the class invariant of the second argument for every valid instance of the

first argument.

Note that multiple dependent arguments are the same as single argument as

they can be generated using a repOk that invokes the repOk of both arguments. We

therefore do not evaluate them separately.

To show how staged symbolic execution scales with varying number of ar-

guments, we consider a union method of a binary search tree and of a sorted linked

list. We test taking the union of two, three, and four arguments and present the
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Table 5.2 Increasing number of arguments.
Total Symbolic Exec. Staged Symbolic Exec.

# non-equiv. Valid/Explored Valid/Explored Sav-
args tests1 tests ( Time ) tests ( Time ) ings
SearchTree.union (size 2)

2 625 16/96 ( 47.7s) 20/36 ( 11.6s) 4.1X
3 117,649 64/400 ( 14m18.9s) 68/84 ( 1m53.5s) 7.6X
4 43,046,721 256/1616 (244m23.5s) 260/276 (30m44.8s) 7.9X

SortedList.union (size 2)
2 225 9/33 ( 9.7s) 12/18 ( 7.2s) 1.3X
3 21,952 27/105 ( 1m29.3s) 30/36 ( 19.0s) 4.7X
4 4,100,625 81/321 ( 10m50.9s) 84/90 ( 1m47.1s) 6.1X

1 Total non-equivalent tests calculated as in Table 5.1.

results in Table 5.2.

5.7.3 Regression testing using mutants

In this experiment, we show the benefit of staged symbolic execution for

regression testing. Following previous work [31], we use mutants to simulate soft-

ware evolution. We generated mutants manually with mutation operators: chang-

ing a comparison operator, changing a field with another field of the same type,

and deleting a statement. (adapted from [83]). Six mutants of the add method are

generated for each of binary search tree, sorted linked list, and binary heap.

For staged symbolic execution, we only need to run the first stage once

because the pre-conditions of add method have not changed. Thus the cost of this

stage is amortized over all the runs. We show our data in Table 5.3 and plot it as

a graph in Figure 5.4. We call the original add method m0 while the mutants are

called m1 – m6. As we can see that the total time taken by staged symbolic execution

is significantly less than a normal symbolic execution of all mutants. This shows
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the performance advantage of sharing symbolic execution results of one stage for

regression testing.

Figure 5.4 Comparison of time for testing the original add method and six mutants
for SearchTree (size 4), SortedList (size 8), and BinaryHeap (size 10).
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5.7.4 Observations

Staged symbolic execution provides a number of benefits over standard

symbolic execution and over test suites made using black box techniques. We ob-

serve:

Enabling symbolic test suites. The standard way to create test suites using stan-

dard symbolic execution is to concretize the tests. If this concretization is done

using the class invariant alone, then we lose important tests that could have been

created if the method under test was symbolically executed along with the class

invariant. If however, the concretization is done after the method under test is

symbolically executed, the test suite has to be regenerated whenever the method

is changed. Staged symbolic execution requires a significantly smaller number of

tests to be stored. It uses abstract symbolic inputs that can be saved and used to
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Table 5.3 Comparison of time for regression testing.
Staged Symbolic Execution

Symbolic Exec. Stage 1 Stage 2
benchmark Valid/Explored Valid/Exp. Valid/Explored

Tests ( Time ) (Time) Tests ( Time )
m0 99/344 ( 7m54.7s) 99/99 ( 1m16.1s)
m1 45/290 ( 6m41.5s) 45/45 ( 49.7s)

Mutants of m2 71/316 ( 6m43.5s) 71/71 ( 58.3s)
SearchTree m3 64/309 ( 6m01.4s) 23/268 64/46 ( 33.2s)
.add (size 4) m4 64/309 ( 7m18.3s) ( 6m26.5s) 64/64 ( 1m17.3s)

m5 64/309 ( 6m25.7s) 64/64 ( 44.0s)
m6 99/344 ( 7m12.7s) 99/99 ( 1m13.0s)

Total: 48m17.8s Total: 13m18.1s Savings: 3.6X
m0 45/90 (13m09.3s) 45/45 ( 33.1s)
m1 17/62 (15m30.0s) 17/17 ( 10.6s)

Mutants of m2 24/69 (15m25.7s) 24/24 ( 34.6s)
SortedList.addm3 45/90 (13m28.2s) 9/54 45/45 ( 39.9s)
.add (size 8) m4 45/90 (14m51.6s) (14m01.6s) 45/45 ( 47.1s)

m5 45/90 (15m27.4s) 45/45 ( 44.2s)
m6 45/90 (14m50.5s) 45/45 ( 39.0s)

Total: 102m42.7s Total: 18m10.1s Savings: 5.7X
m0 32/198 ( 4m37.0s) 32/32 ( 35.1s)
m1 24/190 ( 4m32.9s) 24/24 ( 33.4s)

Mutants of m2 28/194 ( 4m37.9s) 28/28 ( 35.3s)
BinaryHeap m3 24/190 ( 5m30.6s) 11/177 24/24 ( 57.0s)
.add (size 10) m4 24/190 ( 5m40.6s) ( 4m28.2s) 24/24 ( 57.7s)

m5 13/179 ( 5m09.2s) 13/13 ( 29.4s)
m6 25/191 ( 4m57.9s) 25/25 ( 32.3s)

Total: 35m06.1s Total: 9m08.4s Savings: 3.8X
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reconstruct the symbolic state at a later stage.

Performance improvements. We have seen the performance benefit of staged

symbolic execution in Table 5.1. We plot some data from that table in Figure 5.5.

We can see that Stage 1 and standard symbolic execution take more or less the same

amount of time, whereas Stage 2 takes significantly less time than a complete run

of symbolic execution.

Figure 5.5 Comparison of time for SearchTree (size 4), SortedList (size 8), and
BinaryHeap (size 10).
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Library of abstract symbolic tests. We have seen that we have isolated most of

the overhead of symbolic execution for structurally complex inputs in the first stage

of staged symbolic execution. This stage works regardless of the method under

test. Also, the number of generated tests is manageable. This means, we can create

a library of abstract symbolic tests. When an abstract symbolic test from such a

library is used, there is no overhead at all and the first invocation gets all the benefit.

Such a library can contain abstract symbolic tests for common structures like lists,

trees, etc. The library can even be generated using other tools, e.g. black box tools

like Alloy or Korat.
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Chapter 6

Discussion

Our choice to develop the Pikse methodology in the context of Korat and

symbolic execution was motivated by an initial empirical study that we performed.

To enhance the applicability of the Pikse techniques for combined black-box and

white-box testing, we developed a form of symbolic execution for Alloy. This

chapter describes the empirical study (Section 6.1) and symbolic execution for Al-

loy (Section 6.2), which were initially presented at ICFEM 2009 [99] and ICFEM

2011 [97].

6.1 Empirical study

Structural constraint solving allows finding object graphs that satisfy given

constraints, thereby enabling software reliability tasks, such as systematic testing

and error recovery. Since enumerating all possible object graphs is prohibitively

expensive, researchers have proposed a number of techniques for reducing the num-

ber of potential object graphs to consider as candidate solutions. These techniques

analyze the structural constraints to prune from search object graphs that cannot

satisfy the constraints. Although, analytical and empirical evaluations of individ-

ual techniques have been done, comparative studies of different kinds of techniques

are rare in the literature. We performed an experiment [99] to evaluate the rela-

tive strengths and weaknesses of some key structural constraint solving techniques.

The experiment considered four techniques using: a model checker, a SAT solver,
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two symbolic execution engines, and a specialized solver. It focused on their rela-

tive abilities in expressing the constraints and formatting the output object graphs,

and most importantly on their performance. Our results highlight the trade-offs of

different techniques and help choose a technique for practical use.

Generating test inputs for programs that manipulate structurally complex

inputs like XML documents or red black trees is a complex operation. Manual gen-

eration of these tests is time consuming, error prone, and has fairly limited ability

to find bugs whereas systematic testing, which is effective at finding bugs, is not

straightforward as there are no simple enumerators for structurally complex inputs.

Automated generation of structurally complex test inputs can be done in two

basic ways: using generator functions [113, 115] and by solving constraints [10,

76]. Generator functions are functions that perform basic operations to construct

and build structures (e.g., constructors or mutator methods in Java). Automated

testing using generator functions typically uses different orderings of generator

functions to produce test inputs. This can however result in the same structures

repeated, i.e., redundant tests, and some kinds of structures may never be produced.

Generator functions are mostly applied for generating larger inputs effectively.

Automated testing by solving structural constraints [10, 76] enables system-

atic testing where the program is tested against all test inputs within given bounds.

Even though doing so is feasible only for small bounds, it has been shown to give

high code coverage and find faults in programs with structurally complex inputs [62,

76, 106]. Also, by writing constraints we can conveniently describe a whole class

of structurally complex test inputs. In this dissertation, we discuss the techniques

that can be used for systematic testing based on structural constraint solving.

The structural constraints used by systematic testing techniques are usually

written either as declarative constraints or as imperative constraints. Alloy [55] (one
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of the techniques discussed here) uses declarative constraints written in relational

logic using quantified formulas. The other three techniques that we evaluate use

imperative constraints. We call them imperative in contrast to declarative as they

use constraints written in an imperative language (C or Java in our case). We note

that these imperative constraints are required to be free of side-effects and hence

are declarative in nature (even though they are written in an imperative language).

For the purpose of comparison and explaining how constraints are written

in different approaches, we will take red-black trees [7, 49] as our running example.

We pick this representative example as it is one of the more complex structures, one

of the structures commonly used for evaluation in previous work, and one that is

likely to be familiar.

6.1.1 Background of Subject Tools

6.1.1.1 JPF — Model Checker

Model checking [20] has traditionally been applied to software [5, 25, 50,

111] for checking event sequences, specified in temporal logic or as a finite state

machine of API usage rules. If a program is checked successfully, no input and

execution can lead it to an error. Thus model checking provides a strong guaran-

tee. However these techniques did not consider checking properties and validity

of complex structures. The model checkers BLAST and SLAM are also used for

white-box test input generation [8] targeting to cover specific predicates. The two

are also not applied to solving complex structural constraints.

Generalized Symbolic Execution [64] introduced the idea of using a model

checker for solving structural constraints. As an enabling technology, the JPF (Java

Path Finder) model checker [111] was used. JPF is an explicit-state model checker

for Java programs that has been used to find errors in a number of complex sys-
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tems [4, 11, 85]. It is built on top of a custom Java Virtual Machine (JVM). There-

fore it handles all standard Java features and in addition allows non-deterministic

choices written as annotations. These annotations are added by method calls to

class Verify. The following methods in this class are important:

• randomBool() returns a non-deterministic boolean value

• random(n) returns a non-deterministic integer in [0,n]

• ignoreIf(cond) makes JPF backtrack if cond is true

Generalized symbolic execution provides a source-to-source translation of

a Java program such that it can be symbolically executed by any standard model

checker that supports non-deterministic choice. The technique of generalized sym-

bolic execution is based on lazy initialization, i.e. it initializes fields when they are

first accessed during symbolic execution of a method. Due to this lazy initialization,

the algorithm only executes program paths on non-isomorphic inputs. This can be

used for systematic generation of structurally complex inputs by symbolically exe-

cuting a predicate checking structural constraints.

Listing 6.1 shows parts of Red Black Tree predicate written for JPF. Note

that all accesses to structure variables are through accessor functions. One accessor

function for header is also shown. It non-deterministically picks one of the nodes

that have already been used or one of the new nodes.

Recently, this technique has been optimized by making modifications to

Java Path Finder [39]. However these optimizations are specific to one model

checker, whereas the original technique can be used on any model checker.
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Listing 6.1. Parts of Red Black Tree predicate written for JPF.
1: c l a s s RedBlackTree {
2: . . .
3: s t a t i c Node [ ] nodes ;
4: s t a t i c i n t maxNode = 0 ;
5: b o o l e a n h e a d e r a c c e s s e d = f a l s e ;
6: Node h e a d e r ;
7: Node h e a d e r ( ) {
8: i f ( ! h e a d e r a c c e s s e d ) {
9: h e a d e r a c c e s s e d = t rue ;

10: i f ( maxNode < nodes . l e n g t h − 1) {
11: maxNode ++;
12: i n t r = V e r i f y . random ( maxNode ) ;
13: i f ( r != maxNode )
14: maxNode−−;
15: h e a d e r = nodes [ r ] ;
16: } e l s e h e a d e r = nodes [ V e r i f y . random ( maxNode ) ] ;
17: }
18: re turn h e a d e r ;
19: }
20: b o o l e a n repOk ( ) {
21: i f ( h e a d e r ( ) == n u l l )
22: re turn f a l s e ;
23: Set<Node> v i s i t e d = new j a v a . u t i l . HashSet<Node > ( ) ;
24: v i s i t e d . add ( h e a d e r ( ) ) ;
25: L i n k e d L i s t<Node> w o r k L i s t = new L i n k e d L i s t<Node > ( ) ;
26: w o r k L i s t . add ( h e a d e r ( ) ) ;
27: whi le ( ! w o r k L i s t . i sEmpty ( ) ) {
28: Node c u r r e n t = w o r k L i s t . r e m o v e F i r s t ( ) ;
29: i f ( c u r r e n t . l e f t ( ) != n u l l ) {
30: i f ( ! v i s i t e d . add ( c u r r e n t . l e f t ( ) ) )
31: re turn f a l s e ;
32: w o r k L i s t . add ( c u r r e n t . l e f t ( ) ) ;
33: }
34: i f ( c u r r e n t . r i g h t ( ) != n u l l ) {
35: i f ( ! v i s i t e d . add ( c u r r e n t . r i g h t ( ) ) )
36: re turn f a l s e ;
37: w o r k L i s t . add ( c u r r e n t . r i g h t ( ) ) ;
38: }
39: }
40: i f ( v i s i t e d . s i z e ( ) != s i z e ( ) | | s i z e ( ) < LOWER BOUND )
41: re turn f a l s e ;
42: re turn r epOkColo r s ( ) && repOkKeys ( ) ;
43: }
44: }
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6.1.1.2 Alloy — Using a SAT Solver

SAT solvers solve boolean formulas. To use SAT solvers for solving struc-

tural constraints, we thus need a language for writing structural constraints, a com-

piler to translate that language into a boolean formula, and a mapping from the

solution of the boolean formula into a solution to the structural constraint.

Alloy [54] provides a declarative language for writing these constraints. It

is based on parts of the Z specification [102]. The Alloy Analyzer [56] provides

a fully automated tool to solve these constraints using a SAT solver. The lat-

est version of Alloy Analyzer (4.1.10) works with many state-of-the-art solvers

like BerkMin [44], MiniSat [101], SAT4J (Java implementation of MiniSat), and

ZChaff [78]. Alloy analyzer provides a translation from the declarative language of

Alloy with quantifiers to a boolean formula when given bounds. It then translates

the solution back to the declarative language.

TestEra [63] builds on Alloy to translate the solutions further back into ac-

tual Java structures. TestEra also adds a layer on top of Alloy language to facilitate

writing preconditions and postconditions, and allows test case generation based on

preconditions and function validation using its postconditions as an oracle. How-

ever for the purpose of constraint solving alone, Alloy is sufficient. The Alloy to

Java translator component of TestEra can be used to translate Alloy solutions into

Java structures. The translation time is insignificant in comparison to the constraint

solving time.

We show class invariant for red-black trees modeled in Alloy in Listing 6.2.

Note that this completely models red black trees. Addition of a few more syntac-

tic sugar like definition of Node etc is all that is needed to generate all possible

red black trees within given bounds. This concise representation is one of the key
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benefits of using a declarative language. However the learning curve of declara-

tive programming for programmers used to program in imperative languages often

offsets this benefit. The bounds for Alloy are written as below:

Listing 6.2. Red Black Tree constraint written for Alloy.
1: all e: rbt·root·∗(left+ right) |
2: // BT: distinct children
3: ( no e·(left+ right) || e·left 6= e·right ) &&
4: // BT: acyclic
5: ( e ! in e·̂ (left+ right) ) &&
6: // BT: distinct parent
7: lone e·̃ (left + right) &&
8: // BST: ordered
9: lt[ e·left·∗(right+ left)·key, e·key ] &&

10: gt[ e·right·∗(right+ left)·key, e·key ] &&
11: // RBT: red node has black children
12: ( e·color in Red && some e·(left + right)
13: ⇒ e·(left + right)·color in Black )
14:

15: all e, f: rbt·root·∗(left+ right) |
16: // RBT: all paths from root to NIL have same #

of black nodes
17: (no e·left || no e·right) && (no f·left || no f·right) ⇒
18: #{ p: rbt·root·∗(left+ right) |
19: e in p·∗(left+ right) && p·color in Black } =
20: #{ p: rbt·root·∗(left+ right) |
21: f in p·∗(left+ right) && p·color in Black }

run test for 1 rbt, exactly 3 Node

The class invariant requires the tree to satisfy binary search tree properties

and the additional properties of red-black trees mentioned in comments in List-

ing 6.2. The reader is referred to Jackson [54] for detailed discussion of Alloy

operators and syntax and to Guibas [49] for red-black tree properties.
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6.1.1.3 CUTE — Symbolic Execution

The idea of symbolic execution dates back at least three decades [65]. Tradi-

tional symbolic execution is a combination of static analysis and theorem proving.

In symbolic execution, operations are performed on symbolic variables instead of

actual data. On branches, symbolic execution is forked with opposite constraints

on symbolic variables in each forked branch. At times, the constraints on symbolic

variables can become unsatisfiable signaling unreachable code. Otherwise, end of

the function is reached and a formula on symbolic variables is formed. A solution

to this formula will give a set of values that will direct an actual execution along the

same path.

Renewed interest in symbolic execution is seen in the last decade [13, 23,

36]. Generalized Symbolic Execution [64] extended the concept to concurrent pro-

grams and complex structures.

The main problem with symbolic execution is that for large or complex

units, it is computationally infeasible to maintain and solve the constraints required

for test generation. Larson and Austin [70] combined symbolic execution with

concrete execution to overcome this limitation. Their approach was primitive as

they used symbolic execution to make the path constraint of a concrete execution

and find other input values that can lead to errors along the same path.

DART (Directed Automated Random Testing) [42] is one of the first tools

to systematically combine symbolic execution and concrete execution. Similar to

previous approach, they formed a path constraint during concrete execution. How-

ever after the execution, they backtrack on the path constraint by negating clauses,

solve the new constraints, and re-run concrete execution expecting it to follow a

new path. When it is not feasible to solve the modified constraints, they substitute

random concrete values. Another simultaneous effort was EGT (Execution Guided
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Test Cases) [16] using a similar approach. Lastly, CUTE (Concolic Unit Testing

Engine for C) [91], another tool using similar approach, is the tool that we will be

using here. It is the only tool that can handle pointers and complex structures.

The idea of using CUTE to generate test cases has been briefly discussed but

not evaluated [91]. There, the authors considered prev pointers in a doubly linked

list and discussed the order (big O) of candidates CUTE and Korat (discussed be-

low) explore to find answers. In our evaluations we thoroughly cover this example

among others. In particular, we discuss the constants involved (time of exploring

one candidate) and constraint rewriting requirements to understand which approach

is likely better in practical usage.

We show parts of the red-black tree constraint written in C for use in CUTE

in Listing 6.3. The NODES variable is introduced to keep a count of nodes used. We

break the loop when more than UPPER BOUND nodes have been touched and return

false if less than LOWER BOUND nodes were touched during the execution. This is

how we control the desired number of objects when generating structures in CUTE.

Rest of the constraint is similar to what was shown in Listing 6.1.

6.1.1.4 Pex — Symbolic execution based on Z3

Pex [109] is another symbolic execution engine that is based on the Z3 con-

straint solver [79]. Pex builds upon other dynamic symbolic execution schemes like

CUTE[91] and DART[42]. Pex can reason about safe .NET programs and a sub-

set of the unsafe features of .NET. Here unsafe means that there are unverifiable

memory accesses using pointer arithmetic.

A key benefit of Pex is its integration in the Visual Studio IDE and its test-

ing frameworks. This makes Pex accessible to a large audience. Pex, by default, is

focused on statement coverage and uses heuristics to increase it. For bounded ex-
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Listing 6.3. Parts of Red Black Tree predicate written for CUTE.
1: int repOk( struct bintree* b ) {
2: struct listnode* visited=0, *worklist=0;
3: int NODES = 0;
4: if( b->root == 0 )
5: return 0;
6: visited = newnode( b->root , visited );
7: ++NODES;
8: worklist = newnode( b->root , worklist );
9: while( worklist ) {

10: struct node* current = worklist ->data;
11: worklist = worklist ->next;
12: if( current ->left ) {
13: if( !addunique( visited , current ->left ))
14: return 0;
15: ++NODES;
16: worklist = newnode( current ->left , worklist );
17: }
18: if( current ->right ) {
19: if( !addunique( visited , current ->right ))
20: return 0;
21: ++NODES;
22: worklist = newnode( current ->right , worklist );
23: }
24: if( NODES > UPPER_BOUND )
25: return 0;
26: }
27: if( b->size != vcount || NODES < LOWER_BOUND)
28: return 0;
29: return repOkColors(b) && repOkKeys(b);
30: }
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haustive testing, we however required it to produce all tests for the same statements.

We restricted Pex’s exploration to given bounds using additional comparisons like

we did for CUTE.

Parts of the red-black tree predicate written in C# for Pex are shown in

Listing 6.4. To use this repOk for exploration we write the following method and

use it to run Pex explorations. The parameter FailuresAndUniquePaths ensures

that we get all unique paths and paths covering the same statements are not omitted.

[PexMethod(TestEmissionFilter =
PexTestEmissionFilter.FailuresAndUniquePaths)]

public static void RedBlackTreeTest
([PexAssumeUnderTest] RedBlackTree target)

{
PexAssume.IsTrue(target.repOk(3,3));

}

6.1.1.5 Korat — A Specialized Solver

Basics of Korat are described in detail in Section 2.2. We here show a

portion of red-black tree constraint written for Korat in Java in Listing 6.5. We also

show how bounds are given for Red Black Tree in Korat’s finitization in Listing 6.6.

Korat has been optimized in a number of ways (Section 7.2). In this study,

we use the original implementation of the Korat algorithm [10].

6.1.1.6 Research Questions

The effectiveness of bounded exhaustive testing (generating all test cases

satisfying the constraints) has been previously shown in application to many real

applications. Here we are concerned with different tools to generate these tests.

Thus we are not concerned with the fault detecting capability of these tools, as this
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Listing 6.4. Parts of Red Black Tree predicate written for Pex.
1: public bool repOk(int LOWER_BOUND , int UPPER_BOUND) {
2: if (root == null)
3: return false;
4: Dictionary <Node , int> visited = new Dictionary <Node , int>();
5: visited.Add(root , 0);
6: Stack <Node > workList = new Stack <Node >();
7: workList.Push(root);
8: while (workList.Count != 0) {
9: Node current = workList.Pop();

10: if (current.left != null) {
11: if (visited.ContainsKey(current.left)
12: || visited.Count == UPPER_BOUND)
13: return false;
14: visited.Add(current.left , 0);
15: workList.Push(current.left);
16: }
17: if (current.right != null) {
18: if (visited.ContainsKey(current.right)
19: || visited.Count == UPPER_BOUND)
20: return false;
21: visited.Add(current.right , 0);
22: workList.Push(current.right);
23: }
24: }
25: if (visited.Count != size || size < LOWER_BOUND)
26: return false;
27: return repOkColors() && repOkKeys();
28: }
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Listing 6.5. Parts of Red Black Tree predicate written for Korat.
1: public boolean repOK() {
2: if (root == null)
3: return false;
4: Set<Node > visited = new HashSet <Node >();
5: visited.add(root);
6: LinkedList <Node > workList = new LinkedList <Node >();
7: workList.add(root);
8: while (!workList.isEmpty()) {
9: Node current = workList.removeFirst();

10: if (current.left != null) {
11: if (!visited.add(current.left))
12: return false;
13: workList.add(current.left);
14: }
15: if (current.right != null) {
16: if (!visited.add(current.right))
17: return false;
18: workList.add(current.right);
19: }
20: }
21: if (visited.size() != size)
22: return false;
23: return repOkColors() && repOkKeys();
24: }
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Listing 6.6. Korat’s specification of bounds for Red Black Tree.
1: I F i n i t i z a t i o n f = F i n i t i z a t i o n F a c t o r y . c r e a t e ( RedBlackTree . c l a s s ) ;
2:
3: IClassDomain ent ryDomain = f . c r e a t e C l a s s D o m a i n ( Node . c l a s s , n u m E n t r i e s ) ;
4: I O b j S e t e n t r i e s = f . c r e a t e O b j S e t ( Node . c l a s s , t rue ) ;
5: e n t r i e s . addClassDomain ( ent ryDomain ) ;
6:
7: I I n t S e t s i z e s = f . c r e a t e I n t S e t ( minSize , maxSize ) ;
8: I I n t S e t keys = f . c r e a t e I n t S e t (−1 , numKeys − 1 ) ;
9: I I n t S e t c o l o r s = f . c r e a t e I n t S e t ( 0 , 1 ) ;

10:
11: f . s e t ( ” r o o t ” , e n t r i e s ) ;
12: f . s e t ( ” s i z e ” , s i z e s ) ;
13: f . s e t ( ”Node . l e f t ” , e n t r i e s ) ;
14: f . s e t ( ”Node . r i g h t ” , e n t r i e s ) ;
15: f . s e t ( ”Node . c o l o r ” , c o l o r s ) ;
16: f . s e t ( ”Node . key ” , keys ) ;

capability would be equal (given sufficient time) for all tools in our scenario. We

are rather concerned with how to write the tests and interpret the output and most

importantly how much time it takes to generate the tests.

We pose the following research questions for our experiment and analysis:

• What are the pros and cons of different tools in writing constraints and defin-

ing bounds?

• How is the output of a tool represented and how it can be converted into actual

test inputs?

• What are the fastest tools for practical sizes of subject structures?

• How well do the tools perform with more and more complex constraints?

• What are the best tools in terms of time complexity?

Next we describe our experiment and its analysis.
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6.1.2 The Experiment

6.1.2.1 Experimental Subjects

To evaluate the selected tools, we consider six data structures: three list

structures, and three tree structures. Note that these complex structures are the

foundation of several data structures used in applications. For example, an XML

document, a file system hierarchy, Java or C class hierarchies, expression trees,

abstract syntax trees for compiler can all be viewed as trees and are likely to give

similar performance to one of the tree structures we consider here. We evaluate the

following six structures:

1. Binary Tree

2. Binary Search Tree

3. Red Black Tree

4. Singly Linked List

5. Doubly Linked List

6. Sorted Linked List

Note that a red-black-tree is a binary search tree which is in turn a binary

tree. By considering all three of them, we intend to learn the effect of increasing

constraint complexity on tool performance.

To reduce bias, we took constraints for the above subjects from previous

work [10], where available. In some cases, we needed to change the constraints so

that the tool under evaluation performs bounded exhaustive testing (as discussed in

the previous section).
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6.1.2.2 Experimental Design

The experiment focused on:

1. Structurally complex constraints (6 constraints of subjects given in previous

section)

2. Bounds (we considered 4 bounds for each subject structure)

3. The constraint solver (one of the four constraint solvers discussed in this dis-

sertation)

On each run, we measured:

1. Time taken to generate all tests

2. Candidates generated to see isomorphism pruning

We also measure qualitative results for:

1. How constraints needed to be converted to run the tool

2. How bounds needed to be converted to run the tool

3. How results from the tool needed to be converted to test cases

Results reported for the experiment were averages of 10 repeated measure-

ments. Thus, for each subject structure and each constraint solver and each given

bounds, we ran the tool 10 times and computed the average. The experiments were

performed on a Linux machine with Intel Pentium 4 2.8Ghz processor and 4GB

RAM. The experiments for Pex were run on a Windows based machine with the

same hardware.
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6.1.2.3 Threats to Internal Validity

Threats to internal validity are influences that can affect dependent variables

without researcher’s knowledge. In this respect, our concerns include the way con-

straints are written and language differences. Constraints can be written to suit one

tool and not the other. We have done our best effort is writing the constraints so

that every tool can perform at its best. Language differences matter because one

of the tools works in C while the rest work in Java. C implementations are inher-

ently faster so the results of this tool would have a slight edge because of language.

However this concern would have been more significant if this tool turned out to

be the fastest which is not the case as we see below. Lastly, we had to use two

different machines as Pex needed a windows machine. This can theoretically affect

the experiment however we expect the OS performance to not be a major factor.

6.1.2.4 Threats to External Validity

Threats to external validity are conditions that limit us in generalizing the

results of our experiment. Our biggest concerns in this area is that the subject pro-

grams might not be representative of complex constraints. To control this threat,

we have studied literature regarding the tools and summarized the complex con-

straints previously studied, we have also studied structures discussed in algorithm

books, and have found that the most commonly used complex structures are actu-

ally the basis of a large class of data structures. For example, B-trees, AVL trees,

Sparse matrices, hash tables are all basically trees or a combination of trees and

lists. We considered complex inputs of real programs like compilers (abstract syn-

tax tree), XML parsers (XML Tree), web browser (HTML Tree), File system tree,

Java class hierarchies, and expression trees. All of these share constraints with the

basic structures we test here. Therefore we believe that our subjects are representa-
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tive of complex constraints and can be used to evaluate constraint solvers.

6.1.2.5 Threats to Construct Validity

Threats to construct validity are situations where measurement instruments

do not adequately capture concepts that they are supposed to capture. In this exper-

iment, we measure performance and ease of writing constraints and using results.

Measuring performance is always risky on today’s multitasking machines. We con-

trolled this threat with repeated measurements and with no sharing of resources.

The quantitative analysis about constraint writing is more prone to this threat. We

control this threat by providing raw data (how constraints are written, bounds given,

results converted) and add our analysis on top of it.

6.1.2.6 Analysis Strategy

We summarize all the data first. We then make observations on this data

and our observations on the three quantitative criteria of constraint writing, giving

bounds, and using results. Finally, we show several comparisons between perfor-

mance of different techniques in graphical form.

6.1.3 Data and Analysis

We provide performance comparison and its analysis followed by quantita-

tive analysis.

6.1.3.1 Performance Comparison

Table 6.1 shows the results of our experiments. The first column lists the

complex structures we chose. The next column specifies the size we are using. For
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Binary Tree, Singly Linked List, and Doubly Linked List, we generate structures

up to given size while we generate structures of exactly that size for the other three

structures. The reason for this is that when generating structures with valid integer

ranges of some data variables (e.g. Sorted List), then all tools except CUTE will

produce all valid assignments while CUTE will provide a single valid assignment.

This makes comparison difficult. We thus chose a fixed size and fixed range of

integers such that only one valid assignment exists. The next four columns in the

table list the times taken by each tool.

Alloy ran into solver limitations for sizes greater than about 15 nodes for all

list structures. Similarly CUTE faced symbolic execution limitations for red black

trees. Other numbers not available are time outs for the allocated 15 minutes.

Table 6.2 shows how well the candidate tools performed in terms of prun-

ing isomorphic candidates. Korat and JPF never produced an isomorphic result.

Also from their algorithm, they would never produce a normal isomorphic result

according to the definition given previously. Note that their can be domain specific

isomorphic results (e.g. isomorphic graphs) which no tool identifies as isomorphic.

CUTE produced isomorphic candidates only when it ran into symbolic execution

limitations. This happened in our case for red-black trees. Alloy produced isomor-

phic candidates most often. Its isomorphism pruning is most limited. For example,

for a singly linked list, other than the root node and the tail node, it produces more

than one isomorphic orderings of the middle nodes.

Lastly, Figure 6.1 shows six graphs, one for each subject structure and plots

the performance of all four tools. The time axis is logarithmic since bounded ex-

haustive testing is an exponentially growing problem and a logarithmic scale better

shows how the tools are performing.

We observe that other than sorted lists, Korat is the fastest tool within 1000s
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Table 6.1 Results of generating bounded exhaustive test cases for six subject struc-
tures by CUTE, Pex, Korat, Alloy, and JPF. Time out or tool limitations are repre-
sented by a hyphen (-).

Subject Size CUTE Korat Alloy JPF Pex

Binary Tree

3 1.761 0.507 0.880 16.349 1.069
4 4.774 0.533 1.085 16.158 1.483
5 15.104 0.567 1.779 16.678 5.279
6 47.427 0.620 5.882 19.405 18.725
7 156.368 0.720 41.866 24.197 66.760
8 527.292 1.048 520.868 48.389 259.729

Search Tree

3 2.580 0.579 1.159 16.415 0.890
4 8.240 0.495 1.423 16.478 3.605
5 28.015 0.547 2.529 21.498 13.803
6 95.764 0.746 3.032 43.905 54.418
7 341.444 2.363 6.437 222.893 217.971
8 - 17.515 26.456 - -

Red Black Tree

3 43.769 0.841 1.571 15.775 1.903
4 82.905 0.875 1.450 17.139 5.718
5 - 0.829 5.293 18.948 23.735
6 - 1.018 4.132 28.186 97.294
7 - 1.687 18.036 57.800 406.256
8 - 5.250 85.277 170.962 -

Singly Linked List

10 0.855 0.389 8.452 16.661 0.400
13 1.073 0.399 602.250 16.414 0.530
50 4.136 0.481 - 18.015 6.038

100 8.383 0.688 - 23.433 17.318
200 17.273 2.110 - 48.625 71.786
300 27.082 6.138 - 104.517 187.063
400 36.811 13.939 - 200.062 378.176
500 48.849 27.982 - 344.724 -

Doubly Linked List

10 1.167 0.408 7.408 16.221 1.475
13 1.523 0.411 130.423 15.242 2.498
50 5.657 0.537 - 18.511 83.219

100 11.900 1.047 - 24.547 601.229
200 25.538 4.987 - 63.614 -
300 44.332 16.354 - 146.015 -
400 67.828 36.503 - 285.589 -
500 100.057 72.686 - 501.617 -

Sorted List

9 1.292 0.395 2.602 21.333 4.173
11 1.557 0.457 7.409 36.900 7.000
13 1.839 1.026 10.420 108.670 10.593
15 2.110 2.286 21.874 439.063 15.298
18 2.821 21.646 - - 25.155
20 2.797 102.609 - - 33.483
22 3.036 499.276 - - 43.443
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Figure 6.1 Performance Comparison of techniques for all six subject structures. Y-
axis shows time in seconds on a logarithmic scale. X-axis shows size of structure.
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Table 6.2 Isomorphic candidates produced.
Subject CUTE Korat Alloy JPF

Binary Tree NO NO YES NO

Binary Search Tree NO NO NO NO

Red Black Tree YES NO NO NO

Singly Linked List NO NO YES NO

Doubly Linked List NO NO YES NO

Sorted List NO NO NO NO

time. For binary tree and Red Black Trees, it also seems to grow the slowest. For

Binary Trees and Binary Search Trees, CUTE is growing linear on a logarithmic

scale which means it is slightly better in terms of time complexity but the actual

problem size where it would take over Korat would be huge.

CUTE is the only tool that handles Sorted Lists successfully, It touches our

1000s limit for generating about 500 element lists. This huge difference is because

the other tools internally generate all possible combinations (n!) whereas symbolic

execution does not. This is also the motivation around some recent work on Korat

and JPF to use symbolic execution for primitives and use the native algorithm for

non-primitive fields [113].

Note also in all graphs that CUTE has the best time complexity. It grows

exponentially (trees) and sub-exponentially (lists) except for red black trees where

symbolic execution faced limitations. Thus when symbolic execution faces lim-

itations and CUTE reverts to take help from concrete execution, we may not get

results comparable to other tools. This is one of the key weak points of CUTE for

bounded exhaustive generation.

Alloy shows an interesting behavior. It performs better for Binary Search

Trees (more complex constraint) than Binary Trees. We believe that this is because

SAT solvers solve the easiest clauses first and the former gives it a better chance at
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doing that. Red black tree performance is in the middle and is better for 4 nodes than

for 3 (and 6 nodes than for 5). We again believe this has to do with the formation

of clauses.

If we carefully note, the graph of JPF is almost at a constant distance above

Korat. Indeed, JPF structural constraint solving algorithm and the Korat algorithm

principally make the same decisions. JPF is only burdened with running a model

checking virtual machine and keeping a lot of additional state which Korat can do

without. That is why they have similar time complexity but a different multiplier.

Thus we can say that Korat is a much faster specialized implementation of what

the JPF structural constraint solving algorithm does without the added overheads of

model checking.

6.1.3.2 Qualitative Comparison

One of the research goals of our experiment was to discuss some qualitative

differences between subject tools. We give summarized results in Table 6.3 and

give a more detailed discussion of each difference below.

Constraint Writing: All tools except Alloy required constraints written in an

imperative language. Constraints are required to be free of side-effects. CUTE con-

straints needed some tweaking to allow symbolic execution to explore all paths. For

example, a return size == 0 statement has to be changed to a branch statement

with separate returns. JPF and Korat can use an arbitrary imperative function that

is free of side-effects. Alloy required declarative predicates. Declarative specifi-

cations are concise and can be significantly smaller than an equivalent imperative

specification. The trade-off is the learning curve of declarative language for pro-

grammers used to writing code in imperative languages.
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Table 6.3 Comparison of structural constraint solving techniques on non-
performance metrics.

Constraints Bounds Output
CUTE Imperative function:

Some special care at branches to
enable symbolic execution to visit
both branches

For linear structures, giving a
depth bound in invoking CUTE is
enough; for others, special checks
needed to be inserted inside the
predicate

Each complex structure is avail-
able at end of testing function in a
separate process

Korat Imperative function:
No special restrictions

An imperative function listing
bounds for each object and predi-
cate involved (finitization)

Each structure is available in a spe-
cial function in the same single
process

Alloy Declarative predicate:
In relational quantified logic

List of bounds for each object in-
volved

Result is a list of solutions that can
be translated into actual heap struc-
tures using Alloy to Java translator
in TestEra [63]

JPF Imperative function:
Need to use special accessor func-
tions (can be added automatically)
that use model checker’s non-
determinism

Ranges can be specified in special
accessor functions

Each complex structure is avail-
able at end of testing function in a
separate process

Giving Bounds: Korat and Alloy were the easiest to provide bounds, which is

not surprising since they are designed for specification-based, bounded exhaustive

checking. They differed in that Alloy required bounds for each type whereas Korat

was more explicit in requiring bounds for each field of each type. Also for prim-

itives, Korat can use lower bounds and upper bounds whereas Alloy would need

those bounds as part of specification and not as part of bounds. To limit structures

generated by CUTE within bounds, we needed to tweak its imperative predicate.

Providing bounds using the JPF approach was simple. In this approach the required

arrays (universe of values) were constructed during the testing Main method. Val-

ues of these arrays are non-deterministically used by accessor functions (possibly

automatically added).

Using Results: The JPF approach and CUTE approach produce each result, i.e.

structure that represents a test input, in a separate execution (process). This result

can directly be used for testing or saved for later use. Korat approach produces each
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result in the same execution (process). The result can be saved. Direct testing has to

be careful about using a new process to avoid crashing of Korat due to faulty code.

In previous work, these results have been distributed for parallel test execution [77].

Alloy produces solutions to declarative specifications. These need to be converted

to the corresponding imperative language for actual test use. One tool in this area

is Alloy to Java converter used in TestEra [63]. This tool can generate actual Java

structures corresponding to Alloy output.

Treatment of primitive fields: While the key benefit of structural constraint solv-

ing is non-primitive fields (pointers to objects), primitive fields also pose a limita-

tion. All the surveyed tools except CUTE try all possible values for a given prim-

itive field. This often results in exponential or factorial amount of time. CUTE

excels in this area by providing a single valid solution for such fields.

6.1.4 Summary and Conclusions

In this dissertation, we performed an empirical study of using four different

techniques for constraint solving to perform bounded exhaustive testing. Bounded

exhaustive testing has been previously shown effective at finding faults in real pro-

grams. Here, our goal is to compare the performance of these tools. We considered

the CUTE tool based on symbolic execution, the JPF model checker, the Alloy tool

based on SAT, and the specialized solver Korat . Our key results are:

• The fastest tool for most of the subjects of small size is Korat. However it

degrades in performance when several constraints are on primitive fields.

• The JPF constraint solving approach using lazy initialization is effectively a

slower Korat.
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• Alloy provides the most concise way of writing predicates. For programmers

knowledgeable in declarative languages, it can significantly reduce time to

write or maintain specifications.

• CUTE provides better time complexity than most tools however the slope

constant is fairly high. This is because of the symbolic execution overhead.

• CUTE requires some tweaking of class invariants to enable bounded exhaus-

tive generation.

• No tool gives better non-isomorphic generation for exhaustive enumeration

than the Korat algorithm (and likewise lazy initialization using JPF).

• All tools except CUTE provide bounded exhaustive checking by design and

CUTE focuses on generating one input per path.

6.2 Symbolic Alloy

While symbolic execution today lies at the heart of some highly effective

and efficient approaches for checking imperative programs, the use of symbolic

execution in declarative programs is uncommon. Unlike imperative programs that

describe how to perform computation to conform to desired behavioral properties,

declarative programs describe what the desired properties are, without enforcing a

specific method for computation. Thus, symbolic execution, or execution per se,

does not directly apply to declarative programs the way it applies to imperative

programs.

In this section, we present symbolic Alloy [97] – a novel approach to

symbolic execution for declarative programs written in the Alloy modeling lan-

guage [55]. Unlike imperative programs that describe how to perform computation
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to conform to desired behavioral properties, declarative programs describe what

the desired properties are, without enforcing a specific method for computation.

Thus, symbolic execution does not directly apply to declarative programs the way

it applies to imperative programs. Our insight is that we can leverage the fully au-

tomatic, SAT-based analysis of the Alloy Analyzer to enable symbolic execution of

Alloy models – the analyzer generates instances, i.e., valuations for the relations in

the model, that satisfy the given properties and thus provides an execution engine

for declarative programs. We define symbolic types and operations, which allow

the existing Alloy tool-set to perform symbolic execution for the supported types

and operations. We demonstrate the efficacy of our approach using a suite of mod-

els that represent structurally complex properties. Our approach opens promising

avenues for new forms of more efficient and effective analyses of Alloy models.

Our insight into symbolic execution for Alloy is that path conditions in sym-

bolic execution, which by definition are constraints (on inputs), can play a funda-

mental role in effective and efficient analysis of declarative programs, which them-

selves are constraints (that describe “what”). The automatic analysis performed by

the Alloy tool-set enables our insight to form the basis of our approach. Given

an Alloy model, the analyzer generates instances, i.e., concrete valuations for the

sets and relations in the model, which satisfy the given properties. Thus, the ana-

lyzer, in principle, already provides an execution engine for declarative programs,

which bears resemblance to concrete execution of imperative programs. Indeed, a

common use of the analyzer is to simulate Alloy predicates and iterate over con-

crete instances that satisfy the predicate constraints [55]. The novelty of our work

is to introduce symbolic execution of Alloy models, which is inspired by traditional

symbolic execution for imperative programs. Specifically, we introduce symbolic

types and symbolic operators for Alloy, so that the existing Alloy Analyzer is able
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to perform symbolic execution for the supported types and operations. To illustrate,

symbolically simulating an Alloy predicate using our approach allows generating a

symbolic instance that consists of a concrete valuation, similar to a traditional Al-

loy instance, as well as a symbolic valuation that includes a constraint on symbolic

values, similar to a path condition.

We demonstrate the efficacy of our approach using a suite of models that

represent a diverse set of constraints, including structurally complex properties. Our

approach opens promising avenues for new forms of more efficient and effective

analyses of Alloy models. For example, our approach allows SAT to be used to

its optimal capability for structural constraint solving, while allowing solving of

other kinds of constraints to be delegated to other solvers. As another example, our

approach allows Alloy users to view multiple instances simultaneously without the

need for enumeration through repeated calls to the underlying solver: a symbolic

instance represents a class of concrete instances.

6.2.1 Illustrative Example

This section presents an example of symbolic execution of Alloy formulas

using a sorted linked list. In Section 2.3 we presented the Alloy specification for a

linked list. To make it into a sorted linked list, we use the following predicate.

pred RepOk(l: SortedList) {
all n: l·header·∗nextNode| n !in n·̂ nextNode -- acyclicity
#l·header·∗nextNode = l·size -- size ok
all n: l·header·∗nextNode |
some n·nextNode ⇒ n·data < n·nextNode·data } -- sorted

The Alloy Analyzer can be used on this model to find instances of a sorted

linked list. We add the following commands to our model to test the RepOk predicate

for three nodes.
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fact { SortedList·header·∗nextNode = Node } -- no unreachable Node
run RepOk for 3 -- maximum 3 atoms of each kind

As a result of executing this model, Alloy Analyzer produces an instance.

The user can get more and more instances by clicking next. One example instance

is shown in Figure 6.2a. This sorted linked list represents the sequence 〈4,6,7〉.

The Alloy Analyzer produces many more instances with three nodes with different

sorted arrangements of integers in the domain of Alloy integers.

Figure 6.2 Visualizing a sorted linked list with three nodes.

(a) Concrete (b) Symbolic

Symbolic execution of Alloy (Section 6.2.2) is a technique to produce in-

stances with symbolic variables and a set of constraints over those symbolic vari-

ables. These individual constraints are called clauses in our models. The technique

is implemented as (1) Alloy library module, (2) a set of guidelines for the user on

how to write their Alloy formulas, (3) a set of mechanically generated rules, and

finally (4) a mechanism to invoke the Alloy Analyzer. To use symbolic execution

of Alloy, the user writing the model has to include the symbolic module:

open symbolic

The user changes any uses of Int they wants to make symbolic to

SymbolicInt. The updated signature declarations for our example look like this:
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one sig SortedList {
header: lone Node,
size: SymbolicInt }

sig Node {
data: SymbolicInt,
nextNode: lone Node }

Lastly, the user changes any operations performed on the symbolic vari-

ables to use the predicates provided by the symbolic module (e.g. eq, lt, gt, etc.).

We follow the predicate names introduced by the Alloy 4.2 release candidate in its

integer module for concrete operations on integers. If the user uses these predi-

cates, no changes are required for predicate invocation. The Alloy Analyzer’s type

checking finds out whether a symbolic operation is needed or a concrete operation.

The updated RepOk predicate looks like this:

pred RepOk(l: SortedList) {
all n: l·header·∗nextNode| n !in n·̂ nextNode -- acyclicity
(#l·header·∗nextNode)·eq[l·size] -- size ok
all n: l·header·∗nextNode |
some n·nextNode ⇒ (n·data)·lt[n·nextNode·data] } -- sorted

As the next step, the Alloy module is transformed and a new fact is me-

chanically generated. This fact ensures that the symbolic integers used are all

unique. For sorted linked list, this fact is:

fact {
#SymbolicInt = (#SortedList)·plus[#Node]
SymbolicInt = SortedList·size + Node·data }

Finally, when this updated model is run through Alloy Analyzer, models

with a set of constraints on these symbolic integers are generated. An example

instance with three nodes is given in Figure 6.2(b). This time, however, it is the

only instance with three nodes. Other instances either have fewer or more nodes.
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This helps the user visualize the model in a more efficient manner. Also a symbolic

instance more explicitly states the relationship between data nodes.

6.2.2 Symbolic execution of Alloy formulas

This section presents the four key parts of our approach: (1) Alloy library

module that introduces symbolic variables and operations on them as well as a

representation for clauses that define constraints on symbolic fields, (2) changes

required in the user model to introduce symbolic fields, (3) mechanically generated

facts that enable consistent usage of symbolic values, and (4) Alloy Analyzer usage

to restrict any redundant clauses from being generated.

6.2.2.1 Symbolic Alloy module

This section presents the Alloy module that enables symbolic execution.

The module starts by the module declaration and a few signatures:

module symbolic

abstract sig Expr {}
sig SymbolicInt, SymbolicBool extends Expr {}

abstract sig RelOp {}
one sig lt, gt, lte, gte, eq, neq, plus, minus extends RelOp {}

Expr atoms represent expressions that can be symbolic variables or expres-

sions on symbolic variables and plain integers. RelOp are single atoms (because of

the one modifier) that represents a few binary operations we demonstrate. Next we

define the Clause atom, which is an expression combining two symbolic variables,

standard Alloy integers, or expressions.

abstract sig Clause extends Expr {
LHS: Expr+ Int,
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OP: RelOp,
RHS: Expr+ Int }

Next, we have a set of predicates that require certain clauses to exist. For

example the following lt and eq predicates would require that appropriate Clause

atoms must exist. These Clause atoms in the final output show us the relationship

enforced on symbolic variables in the model.

pred lt(e1: Expr+ Int, e2: Expr+ Int) {
some c: Clause | c·LHS = e1 && c·OP = LT && c·RHS = e2 }

pred eq(e1: Expr+ Int, e2: Expr+ Int) {
some c: Clause | c·LHS = e1 && c·OP = EQ && c·RHS = e2 }

Similar predicates exist for all supported operations and Alloy functions

exist to combine plus and minus operators to form more complex expressions.

6.2.2.2 User modifications to Alloy model

This section describes the changes required of the user in their model. Some

such changes were discussed in Section 6.2.1 in the context of a sorted linked list.

The first change is a call to use the symbolic module. This imports the

library signatures, predicates, and functions discussed in the previous section.

open symbolic

Next the user changes Int to SymbolicInt and Bool to SymbolicBool.

These are the only primitive types supported by the Alloy Analyzer and we enable

symbolic analysis for both of them.

Lastly, the user has to change all operations on symbolic variables to use

one of the predicates or functions in the symbolic module. However, the names

we used are the same as those used in the built-in Alloy integer module. The

new recommended syntax of Alloy 4.2 release candidate is already to use such
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predicates. Specifically, for plus and minus predicates, the old syntax is no longer

allowed. The + and - operators exclusively mean set union and set difference now.

We follow the lead of this predicate-based approach advocated in the Al-

loy 4.2 release candidate and support eq, neq, lt, gt, lte, gte, plus, and minus

in our symbolic module. If the user is using old Alloy syntax, he has to change to

the new syntax as follows:

a = b ⇒ a.eq[b]
a < b ⇒ a.lt[b]
a > b ⇒ a.gt[b]
a + b ⇒ a.plus[b]
a - b ⇒ a.minus[b]

The plus and minus operations in our symbolic library come in two forms:

as a predicate and as a function. The predicate requires the clause to exist and

the function returns the existing clause. For example, to convert an expression

a+b>c the user first converts it to new syntax i.e. (a.plus[b]).gt[c]. Then

he adds the plus operation as a separate predicate as well i.e. a.plus[b] &&

(a.plus[b]).gt[c]. The compiler recognizes the first invocation as a predicate

that requires a new clause to exist and the second invocation as returning that clause.

If the predicate is omitted, the function returns no clause and no satisfying model

is found. We include two case studies that show how it is used (Figure 6.5 and

Figure 6.6).

6.2.2.3 Mechanically generated facts

This section presents the Alloy facts that our technique mechanically gen-

erates to ensure soundness of symbolic execution. These facts ensure that symbolic

variables are not shared among different objects. For example, two Node atoms

cannot point to the same SymbolicInt atom as data. Otherwise, we cannot distin-
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guish which node’s symbolic variable a Clause is referring to. Note that this does

not prevent two nodes to contain the same integer value.

We use two mechanically generated facts to ensure uniqueness of symbolic

variables. To form these facts, we find all uses of symbolic variables (SymbolicInt

and SymbolicBool). We describe the generation of facts for SymbolicInt. Similar

facts are generated for SymbolicBool.

Consider a sig A where B is a field of type SymbolicInt – i.e. B is a

relation of the type A→SymbolicInt. We form a list of all such relations {(A1, B1),

(A2, B2), (A3, B3), ...} and then generate two facts.

The first fact ensures that all SymbolicInt atoms are used in one of these

relations and the second fact ensures that we exactly have as many SymbolicInt

atoms as needed in these relations. If any SymbolicInt atom is used in two rela-

tions, then some SymbolicInt atom is not used in any relation (because of second

fact), but unused SymbolicInt atoms are not allowed (because of first fact). Thus

the two facts are enough to ensure unique symbolic variables.
SymbolicInt = A1·B1 + A2·B2 + A3·B3 + ···
#SymbolicInt = #A1 + #A2 + #A3 + ···

Note that if some sig has more than one SymbolicInt, then for some i, j,

Ai = Aj. The particular sig will be counted twice in the second fact. Also note

that the new Alloy syntax requires the second fact to be written using the plus

function as the + operator is dedicated to set union operation.
#SymbolicInt = (#A1)·plus[(#A2)·plus[(#A3)·plus[ ···]]]

6.2.2.4 Alloy Analyzer usage

This section discusses a practical issue in analyzing a model that contains

symbolic clauses instead of concrete integers. The key problem is to deal with
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redundant clauses that may exist in a symbolic instance because they are allowed

by the chosen scope, although not explicitly enforced by the constraints, i.e., to

separate redundant clauses from enforced clauses. Recall that the Alloy Analyzer

finds valid instances of the given model for the given scope. Any instance with

redundant clauses within given bounds is still valid. These redundant clauses are

not bound to any particular condition on the symbolic variables and can take many

possible values resulting in the Alloy Analyzer showing many instances that are

only different in the values of redundant clauses. We present two approaches to

address this problem.

Iterative deepening The first approach is to iteratively run the Alloy Analyzer

on increasing scopes for Clause atoms until we find a solution. The predicates

in symbolic module require certain Clause atom to exist. If the scope for sig

Clause is smaller than the number of required clauses, then the Alloy Analyzer

will declare that no solutions can be found. This separate bound on sig Clause

can be given as:

run RepOk for 3 but 1 Clause

There are three considerations in this approach. The first is performance.

Performance is an issue for large models where the bound on Clause has to be

tested from zero to some larger bound. However, for most models, Alloy analysis is

often performed for small sizes. Thus the repetitions required for testing different

values is also expected to be small. Still, this incurs a performance overhead.

The second consideration is how to decide an upper bound on number of

clauses. The user may use multiple clauses on each symbolic variable. We can

enumerate to twice the number of symbolic variables as a safe bound and then

inform the user that there may be instances with more clauses but none with fewer
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clauses. If the user knows that their model needs more clauses, then they can give a

higher bound for the clauses to find such instances.

The third consideration is if we find a solution with n clauses, there may be

solutions with more than n clauses. For example, the user can write a predicate like:

a·eq[b] || (a·eq[c] && c·eq[b])

Such an expression can result in one to three clauses. If Alloy Analyzer

finds a solution with n clauses, there might be solutions with n+1 and n+2 clauses.

Because of this, when we find a valid solution, we inform the user that there might

be solutions with more clauses. Again, the user – with knowledge of the model –

can force a higher bound on clauses or rewrite such predicates.

6.2.2.5 Skolemization

The second approach for handling the bound on Clause atoms uses skolem-

ization in Alloy. According to Alloy’s quick guide, “Often times, quantified for-

mulas can be reduced to equivalent formulas without the use of quantifiers. This

reduction is called skolemization and is based on the introduction of one or more

skolem constants or functions that capture the constraint of the quantified formula

in their values.”

The important aspect of skolemization for our purpose is that skolemized

atoms are identified explicitly in Alloy Analyzer’s output. If we ensure that all

generated clauses are skolemized we can start with a large bound for Clause atoms

and easily identify redundant Clause atoms in the output.

Additionally, Alloy Analyzer’s code can be modified to generate only

skolemized atoms of one kind. This eliminates all issues related with bounds on

the number of clauses. Only enforced clauses will be generated.
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The only drawback to this scheme is that the user needs to ensure all predi-

cates can be converted by skolemization. For example, the ordering check for sorted

list in Section 6.2.1 does not produce skolemized results the way it is written. How-

ever the following equivalent predicate does:

some tail: l·header·∗nextNode | no tail·nextNode
&& all n: l·header·∗nextNode-tail | (n·data)·lt[n·nextNode·data]

Instead of an implication, we have to use universal and existential quanti-

fiers. The new sorting check for linked list works with skolemization.

Skolemization translates existential quantifier based expressions. In the fu-

ture, it should be investigated if the technique associated with skolemization – that

renames an atom generated to satisfy a predicate – can be separately used for sym-

bolic execution of Alloy. This would require changing the Alloy Analyzer imple-

mentation and only allowing Clause atoms that are generated to satisfy predicates

in the symbolic module. Such Clause atoms would be generated regardless of

how the predicate in symbolic module was invoked.

6.2.3 Case Studies

This section presents four small case studies that demonstrate that our tech-

nique enables novel forms of analysis of Alloy models using the Alloy Analyzer.

6.2.3.1 Red-Black Trees

Red-black trees [26] are binary search trees with one extra bit of information

per node: its color, which can be either red or black. By restricting the way nodes

are colored on a path from the root to a leaf, red-black trees ensure that the tree is

balanced, i.e., guarantee that basic dynamic set operations on a red-black tree take

O(lg n) time in the worst case.
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Figure 6.3 Visualizing the constraints on data in a red-black tree with three nodes.

A binary search tree is a red-black tree if:

1. Every node is either red or black.

2. Every leaf (NIL) is black.

3. If a node is red, then both its children are black.

4. Every path from the root node to a descendant leaf contains the same number

of black nodes.

All four of these red-black properties are expressible in Alloy [63]. Each

node is modeled as:

sig Node {
left: Node,
right: Node,
data: SymbolicInt,
isBlack: Bool }

The core binary tree properties are:

pred isBinaryTree(r: RedBlackTree) {
all n: r·root·∗(left + right) {
n !in n·̂ (left + right) -- no directed cycle
lone n·̃ (left + right) -- at most one parent
no n·left & n·right }} -- distinct children
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We show how symbolic execution of Alloy formulas helps in generating and

visualizing red-black tree instances. Using symbolic execution for size is similar

to sorted linked list. We now show how to make data symbolic and write the binary

search tree ordering constraints using predicates in the symbolic module.

pred isOrdered(r: RedBlackTree) {
all n: r·root·∗(left+ right) { -- ordering constraint
some n·left ⇒ (n·left·info)·lt[n·info]
some n·right ⇒ (n·info)·lt[n·right·info] }}

Next, we consider the isBlack relation. The constraints to validate color

are:

pred isColorOk(r: RedBlackTree) {
all e: root·∗(left + right) | -- red nodes have black children
e·isBlack = false && some e·left + e·right ⇒
(e·left + e·right)·isBlack = true

all e1, e2: root·∗(left + right) | --all paths have same #blacks
(no e1·left || no e1·right) && (no e2·left || no e2·right) ⇒

#{ p: root·∗(left+ right) |
e1 in p·∗(left+ right) && p·isBlack = true } =

#{ p: root·∗(left+ right) |
e2 in p·∗(left+ right) && p·isBlack = true }

}

We don’t want isBlack to be symbolic because isBlack ensures that the

generated trees are balanced. If we allow isBlack to be symbolic, the Alloy Ana-

lyzer will give instances with unbalanced trees combined with a set of unsolvable

constraints for isBlack. To avoid such instances we keep isBlack concrete.

In Figure 6.3, an example of a red-black tree instance produced by symbolic

execution of the above model is shown. The root node is red while both children

are black. The constraints show that data in left node has to be less than data in

root node which has to be less than data in the right node. Another constraint

shows that size has to be three for this red-black tree.
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6.2.3.2 Colored List

In this example, we consider a list where no two successive elements have

the same color. This example presents a case where symbolic booleans are used.

The Node sig is defined as:

Figure 6.4 Visualizing the constraints on a list with alternating colors. Presents an
example with symbolic booleans.

sig Node {
nextNode: lone Node,
color: SymbolicBool }

The check for alternate colors in the list can be written as

pred ColorsOk(l: ColoredList) {
all n: l·header·∗nextNode |
some n·nextNode ⇒ (n·color)·neq[n·nextNode·color] }

When this Alloy model is symbolically executed, one instance we get is

shown in Figure 6.4. There are expressions that restrict the value of each boolean

to be not equal to either its predecessor’s data or its successor’s data.

Such a models help in visualizing the structure of a model and understand-

ing the relationships between various elements. Since each symbolic instance cor-

responds to a class of concrete instances, we are able to visualize more structures

and build a better understanding of the model in much less time.
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6.2.3.3 Fibonacci Series

This example presents how symbolic execution of Alloy models is able to

allow non-trivial numeric operations and help avoid integer overflow. Because of

Alloy’s SAT-based analysis, the domain of integers used has to be kept small and in-

teger overflow is a well-recognized issue. The Alloy 4.2 release candidate supports

an option that disables generation of instances that have numeric overflow. Our

approach provides an alternative solution since we build constraints on symbolic

fields and do not require SAT to perform arithmetic.

Figure 6.5 Visualizing the constraints on data in a fibonacci sequence. Presents an
example of non-trivial numeric constraints.

This example considers a fibonacci series stored in a linked list. The first

two elements are required to contain zero and one. Anything after that contains the

sum of last two elements. This can be modeled in Alloy as:

pred isFibonacci(l: SortedList) {
some l·header ⇒ (l·header·data)·eq[0]
some l·header·nextNode ⇒ (l·header·nextNode·data)·eq[1]
all n: l·header·∗nextNode |
let p = n·nextNode, q = p·nextNode |
some q ⇒ (n·data)·plus[p·data] &&
(q·data)·eq[(n·data)·plus[p·data]] }
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The first two constraints ensure that if the header and its next exist, they

should be equal to 0 and 1 respectively. The third constraint works on all nodes (n)

that have two more nodes (p and q) in front of them. It generates a plus clause

between n and p and then generates an equality clause between the plus clause and

q. This covers all restrictions on data in a fibonacci series.

Figure 6.5 shows an instance of the fibonacci list with four nodes. The con-

ditions show that the third and fourth node have to contain the sum of the previous

two, while the first two nodes can only contain 0 and 1. This shows the expressive

power of symbolic execution for Alloy models and the way it shows a whole class

of concrete inputs in a single visualization.

6.2.3.4 Traditional symbolic execution of imperative code

This section demonstrates an example of a small imperative function that

is translated to Alloy and is symbolically executed using the Alloy Analyzer. This

shows a non-conventional application of the Alloy Analyzer. Consider the abs

function from Section 2.1 that returns the absolute value of its input.

Figure 6.6 Visualizing constraints on two paths within a small imperative function.
Presents an example of visualizing traditional path conditions using Alloy.

(a) First branch
(b) Second branch

static int abs(int x) {
int result;
if (x < 0)
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result = 0 - x;
else result = x;
return result; }

This function can modeled in Alloy as:

pred abs(x: Int, result: Int) {
x·lt[0] ⇒ 0·minus[x] && result·eq[0·minus[x]]
else x·gte[0] && result·eq[x] }

The predicate takes x and result where x is the original input and result

models the return value of this function. Symbolic execution of this function ex-

plores two paths with conditions x<0 on one path and x>=0 on the other path.

When we run this model using symbolic execution for Alloy models, we find

both these paths in the output of Alloy Analyzer. The visualization of these paths

is shown in Figure 6.6. Within the correct bounds and when redundant clauses are

prevented, these are the only two results generated by the Alloy Analyzer.

This case study is one of the novel applications of symbolic execution in Al-

loy. It shows that Alloy can even provide a symbolic execution engine for traditional

symbolic execution. It is yet to be seen how feasible Alloy would be in comparison

with other symbolic execution engines for analysis of imperative programs.
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Chapter 7

Related work

The idea of using constraints for representing test inputs has been used for

at least three decades [21, 53, 65, 87] and implemented in EFFIGY [65], TEST-

GEN [66], and INKA [46] among other tools. However most of this work was to

solve constraints on primitive data like integers and not structural constraints.

Goodenough and Gerhart [45] discuss the importance of specification based

testing. Test case generation has been automated from specifications by many tools.

Some examples are from Z specifications [32], UML statecharts [82], ADL speci-

fications [18], and AsmL specifications [48]. However these specifications are also

targeted to primitive types and not structurally complex inputs.

Constraints on complex structures require very different constraint solving

techniques, which have only been explored more recently. Directions of research

include using model checkers [41, 111], SAT solvers [101], symbolic execution [42,

91], and specialized solvers [10]. Section 6.1.1 discusses some tools that embody

these techniques with examples.

One common problem faced while generating complex structures is isomor-

phism [93]. Two structures are defined to be isomorphic if they only differ in object

identities. For example, if all elements in two nodes of a tree are swapped and all

references to these nodes are swapped too, the resulting structure is identical to the

original except that pointer values in some nodes would be different. Since, most

programs are not concerned with the actual pointer values and only with where
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they are pointing, generating isomorphic structures is considered redundant and the

algorithms attempt isomorph breaking procedures to reduce generated structures.

In the following sections, we describe further details of related work on

symbolic execution, Korat, SAT solvers, and parallel algorithms in this domain.

7.1 Symbolic execution

Clarke [22] and King [65] pioneered traditional symbolic execution for im-

perative programs with primitive types. Much progress has been made on symbolic

execution during the last decade. PREfix [13] is among the first systems to show the

bug finding ability of symbolic execution on real code. Generalized symbolic ex-

ecution [64] shows how to apply traditional symbolic execution to object-oriented

code and uses lazy initialization to handle pointer aliasing. In contrast to general-

ized symbolic execution which solves integer constraints and produces one test case

for each path in repOk, our work on multi-value Korat is centered around reducing

the number of repOk executions to produce all test cases.

The main problem with symbolic execution is that for large or complex

units, it is computationally infeasible to maintain and solve the constraints required

for test generation. Larson and Austin [70] combined symbolic execution with

concrete execution to overcome this limitation. Their approach was limited as they

used symbolic execution to make the path constraint of a concrete execution and

find other input values that can lead to errors along the same path.

Symbolic execution guided by concrete inputs has been a topic of extensive

investigation during the last six years. DART [42] combines concrete and symbolic

execution to collect the branch conditions along the execution path. DART negates

the last branch condition to construct a new path condition that can drive the func-
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tion to execute on another path. DART focuses only on path conditions involving

integers.

To overcome the path explosion in large programs, SMART [40] introduced

inter-procedural static analysis techniques to compute procedure summaries and

reduce the paths to be explored by DART. SMART’s procedure summaries bear

resemblance to abstract symbolic tests but serve a very different purpose — sum-

maries allow symbolic excution to avoid following method calls, whereas abstract

symbolic tests are expanded into concrete tests as required during the second stage

of staged symbolic execution.

CUTE [91] extends DART to handle constraints on references. EGT [15]

and EXE [16] also use the negation of branch predicates and symbolic execution

to generate test cases. They increase the precision of symbolic pointer analysis

to handle pointer arithmetic and bit-level memory locations. Another symbolic

execution tool CREST [12] was introduced for comparing various search strategies.

This is the tool we are basing our one of our parallel techniques upon. KLEE [14]

is the most recent tool from the EGT/EXE family. KLEE is open-sourced and has

been used by a variety of users in academia and industry. KLEE works on LLVM

byte code [1]. It works on unmodified programs written in C/C++ and has been

shown to work for many off the shelf programs. Our work on ranged symbolic

execution uses KLEE as an enabling technology.

Hybrid concolic testing [74] uses random search to periodically guide sym-

bolic execution to increase code coverage. However, it can explore overlapping

ranges when hopping from symbolic execution in one area of code to another, since

no exploration boundaries are defined (other than time out). Ranged symbolic ex-

ecution can in fact enable a novel form of hybrid concolic testing, which avoids

overlapping ranges by hopping outside of the ranges already explored and not re-
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entering them.

Directed incremental symbolic execution [86] leverages differences among

program versions to optimize symbolic execution of affected paths that may exhibit

modified behavior. The basic motivation is to avoid symbolically executing paths

that have already been explored in a previous program version that was symbolically

executed. A reachability analysis is used to identify affected locations, which guide

the symbolic exploration. We believe ranged symbolic execution can provide an

alternative technique for incremental symbolic execution where program edits are

summarized as test pairs that are computed based on the edit locations and the pairs

provide the ranges for symbolic execution.

All the above approaches require verifying the input pre-conditions and run-

ning the program under test together. Thus there is no concept of storing symbolic

tests as part of test suites. The only tests that can be stored are concrete tests that

are generated after analysis of the program under test.

Abstract subsumption checking [3] presents an approach for testing an

under-approximation of the program using symbolic execution. It introduces ab-

stractions for lists and arrays and checks if a symbolic state is subsumed by an

earlier state under the abstractions. If so, the search is backtracked. This way

symbolic execution can substantially reduce the number of explored paths for the

program under-approximated using the abstractions.

Generational search [43] has suggested better search strategies for symbolic

execution. They use the observation that any different clauses in the path condition

can be negated and solved to visit different branches. Negating the first results

in traversing the not-taken side of the first branch while negating the last results

in traversing the not-taken side of the last branch. The former is a breadth-first

strategy while the later is a depth-first strategy. They develop a heuristic to take
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the branches that will maximize code coverage. While their work is focused on

providing a better search strategy, we focus on providing a parallel implementation

and evaluating it.

Symbolic Execution has been applied outside the domain of imperative pro-

grams. Thums and Balser [108] use symbolic execution to verify temporal logic

and statecharts. They consider every possible transition and maintain the symbolic

state. Wang et al. [114] use symbolic execution to analyze behavioral requirements

represented as Live Sequence Charts (LSC). LSC are executable specifications that

allow the designer to work out aberrant scenarios. Symbolic execution allows them

to group a number of concrete scenarios that only differ in the value of some vari-

able. These are novel applications of symbolic execution, however, they translate

the problem from some domain to a sequence of events with choices. This is es-

sentially a sequential operation. To our knowledge symbolic execution has not yet

been applied to declarative logic programs, which is what we do on our work on

symbolic execution for Alloy.

7.2 Structural constraint solving using Korat

Korat implements a state-less search, in the spirit of VeriSoft [41], where

backtracking is achieved through re-execution. The backtracking engine only stores

the sequence of choices on the current path but not the entire program state at each

choice point. The parallel search of PKorat applies to other analyses implemented

using state-less search. To illustrate, consider symbolic execution implemented us-

ing the Java PathFinder (JPF) model checker [64], which uses JPF with state match-

ing turned off. The delegation of work to slaves for symbolic execution would be

identical to the PKorat technique, although a key challenge in scaling this technique

for symbolic execution is to minimize communication among the processors—path
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conditions in symbolic execution can grow significantly and communicating them is

likely to be expensive. Similarly, in principle, the parallel search of PKorat applies

to combined symbolic/concrete execution [42, 91] and enables PKorat to perform

parallel white-box testing. Our work on ranged symbolic execution uses these in-

sights and provides a succint encoding of the state of a run of symbolic execution

using a test input to enable a novel way to perform parallel symbolic execution.

Recent frameworks based on symbolic/concrete (aka concolic or dynamic

symbolic) execution [16, 42, 91] that handle references/pointers are most closely re-

lated to Korat. A major difference is Korat’s spirit of bounded exhaustive generation

and backtracking based on last field accessed and not last branch taken. General-

ized symbolic execution [64] follows Korat’s spirit: lazy initialization of references

has exactly the same effect as Korat’s monitoring – both approaches consider the

same candidates in the same order and generate the same structures. Practically,

Korat is much faster since it is a specialized implementation–baseline Korat is an

order of magnitude faster than a highly optimized version of lazy initialization on

Java PathFinder [39]. In our experiments using CUTE [91] for structural constraint

solving, Korat outperformed CUTE by two orders of magnitude. This is because of

the overhead to keep symbolic state and Korat’s specialized nature to backtrack on

last accessed field. More recently, lazy initialization has also been implemented for

equivalence checking of operations on complex structures in UC-KLEE [88].

Dedicated generators in Korat [75] are most closely related to our technique

of multi-value comparisons in Korat. Dedicated generators exploit common input

properties to efficiently generate inputs. Basic generators check if: (1) a value is in

a set; (2) two values are equal; (3) two values are equal; (4) a values is less/greater

than another value etc. There are high level generators that check if a pointer points

to a tree or an acyclic graph etc. If the user takes the time to use the generator
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library, dedicated generators can be more efficient than our technique. However,

for unmodified predicates, dedicated generators are not applicable, whereas we can

still detect and apply our optimization. In one way, the forwardFn we introduced

is a dedicated generator which is introduced automatically where applicable.

Glass-box testing [28] uses the method to be tested to prune Korat’s gener-

ation. Thus it moves away from the pure black-box approach of Korat. Glass-box

testing can be optimized using our technique. Efficient backtracking [35] optimizes

Korat by using abstract undo operations that enable re-using partial repOk exe-

cutions. However, it needs explicit support from the repOk writer in the form of

using un-doable operations. STARC [34] uses the Korat algorithm to repair struc-

tures. Our approach of multi-value comparisons using Korat would make STARC

efficient by forwarding over many invalid choices and thus reducing the number

of repOk executions. Efficient backtracking improves the performance of explor-

ing one candidate. Normally, for every candidate Korat runs repOk from the start.

However most of the time, only the last accessed field is changed. This means that

the initial part of the predicate will run unnecessarily. The initial part ends at the

first access of a mutated field. Efficient backtracking uses this idea. Instead of Ko-

rat invoking repOk for every candidate, repOk invokes Korat for the next candidate

and then undoes its operations up to the appropriate point. Unlike efficient back-

tracking, our approach of focused generation considers the other problem of what

to generate and what not to generate.

UDITA [38] is a recently developed language that provides the ability to

combine declarative and imperative predicates. It is based on JPF and delayed

choice which is an extension of the lazy initialization algorithm.
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7.2.1 SAT-based analysis — Alloy

SAT-based static analysis tools (such as JAlloy [57], CBMC [19]) can per-

form bounded exhaustive checking for heap-allocated data. However, they require

a translation of the whole program and its specification to a SAT formula: for non-

small programs the formulas choke the solvers. Korat requires solving only for

input constraints, which are much simpler than the cumulative constraint that rep-

resents the correctness of the program under test. Static analysis tools that perform

sound analysis of heap-allocated data (traditional shape analysis [89], verification

conditions [36], separation logic [81]) often require more manual effort (in the form

of loop invariants, additional predicates etc.) and have not been shown to scale to

checking applications, which Korat readily handles.

The Alloy Analyzer uses the Kodkod tool [110], which provides the inter-

face to SAT. The Alloy tool-set also includes JForge [30], which is a framework

for analyzing a Java procedure against strong specifications within given bounds.

It uses Kodkod for its analysis. JForge translates an imperative Java program to its

declarative equivalent. We believe JForge can provide an enabling technology to

transform our technique for symbolic execution of Alloy models to handle impera-

tive programs.

TestEra [76] uses the Alloy tool-set for test input generation. To our knowl-

edge, TestEra is the first tool to provide structurally complex input generation for

systematic black-box testing. Whispec [92] builds on TestEra and solves method

pre-conditions written in Alloy but uses a form of dynamic symbolic execution to

guide concrete test generation for increasing code coverage.
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7.3 Parallel program analysis
7.3.1 Parallel Korat

Parallel testing using Korat has previously been explored in the context of

test generation as well as test execution [77]. The focus of this dissertation is a new

technique for parallel test generation. PKorat can directly use the previous algo-

rithms for parallel test execution. For test generation, PKorat significantly improves

on the previous work, which considered two strategies to parallelize test generation.

The first strategy, SEQ-OFF/ON, executes Korat sequentially once to determine an

optimal partitioning of the input space such that in a subsequent execution of Korat

for the same input space and predicate, each slave explores the same number of

candidate inputs. PKorat differs from SEQ-OFF/ON by not requiring an initial se-

quential run and can in fact be used to optimize SEQ-OFF/ON. The second strategy

PAR-OFF/ON uses randomization to fast-forward Korat search on one machine to

“guess” equidistant candidate vectors. However, experimental results show little

speed-up and low efficiency for PAR-OFF/ON. For example, for generating DAGs

with 7 nodes, PAR-OFF provides 1.41X speed-up on average for 16 workers, and

8.08X speed-up on average for 1024 workers.

7.3.2 Parallel Symbolic Execution

Static partitioning [103] uses an initial shallow run of symbolic execution to

minimize the communication overhead during parallel symbolic execution. The key

idea is to create pre-conditions using conjunctions of clauses on path conditions en-

countered during the shallow run and to restrict symbolic execution by each worker

to program paths that satisfy the pre-condition for that worker’s path exploration.

However, the creation of pre-conditions results in different workers exploring over-

lapping ranges, which results in wasted effort.
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On the other hand, our approach ParSym parallelizes symbolic execution

by treating every path exploration as a unit of work and using a central server to

distribute work between parallel workers. Our work on ranged symbolic execution

uses dynamic load balancing, ensures workers have no overlap (other than on the

paths that define the range boundaries), and keeps the communication low. Both of

these parallel algorithms differ from static partitioning in that they ensure no two

parallel workers analyze an overlapping range and thus cause wasted effort.

KleeNet [90] uses KLEE to find interaction bugs in distributed applications

by running the distributed components under separate KLEE instances and coordi-

nating them using a network model. KleeNet performs separate symbolic execution

tasks of each component of the distributed application in parallel. However, it has

no mechanism of parallelizing a single symbolic execution task.

7.3.3 Other Parallel Dynamic Analysis

Parallel search algorithms in general have long been studied [47, 58, 61].

Only recently, however, they have been used for searching state spaces in the area

of model checking and program testing.

Parallel model checkers have been introduced. For example, Stern and Dill’s

parallel Murφ [104] is an example of a parallel model checker. It keeps the set of

visited states shared between parallel workers so that the same parts of the state

space are not searched by multiple workers. Keeping this set synchronized between

the workers results in expensive communication so the algorithm does not scale

well.

A similar technique was used by Lerda and Visser [112] to parallelize

the Java PathFinder model checker [72]. Parallel version of the SPIN model

checker [51] was produced by Lerda and Sisto [71]. More work has been done
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in load balancing and reducing worker communication in these algorithms [59, 67,

84].

Parallel Randomized State Space Search for JPF by Dwyer et al. [33] takes

a different approach with workers exploring randomly different parts of the state

space. This often speeds up time to find first error with no worker communication.

However when no errors are present, every worker has to explore every state. Our

work on PKorat differs in that no two workers explore the same state.

7.3.4 Parallel Frameworks

There are general parallelization frameworks both on clusters and multicore

machines. Cilk [9] is one the most popular framework for multicore or multipro-

cessor shared memory machines. It uses a work stealing algorithm that forms the

basis of our distributed work stealing algorithm. Load balancing on distributed

systems using work stealing [69] is also a well-studied topic. We use symbolic exe-

cution specific units of work and use a similar work stealing approach. PVM [107]

was a popular framework for clusters but has been largely made obsolete by MPI

(Message Passing Interface) which is a standard implemented on many platforms.

However these frameworks provide the basis for implementing more specialized

algorithms like in our case; we build our distributed work stealing on top of MPI.
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Chapter 8

Conclusions

This dissertation introduced Pikse, a novel methodology for more effec-

tive and efficient checking of code conformance to specifications using parallel

and incremental techniques, described a prototype implementation that embodies

the methodology, and presented experiments that demonstrate its efficacy. Pikse

has at its foundation a well-studied approach – systematic constraint-driven anal-

ysis – that has two common forms: (1) constraint-based testing – where logical

constraints that define desired inputs and expected program behavior are used for

test input generation and correctness checking, say to perform black-box testing;

and (2) symbolic execution – where a systematic exploration of (bounded) program

paths using symbolic input values is used to check properties of program behavior,

say to perform white-box testing.

Our insight at the heart of Pikse was that for certain path-based analyses,

(1) the state of a run of the analysis can be encoded compactly, which provides

a basis for parallel techniques that have low communication overhead; and (2) it-

erations performed by the analysis have commonalities, which provides the basis

for incremental techniques that re-use results of computations common to succes-

sive iterations. We embodied our insight into a suite of parallel and incremental

techniques that enabled more effective and efficient constraint-driven analysis. We

presented a series of experiments to evaluate our techniques. Experiemntal results

showed Pikse enables significant speedups over previous state-of-the-art.
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